Jump to Content

Ian Fischer

Authored Publications
Google Publications
Other Publications
Sort By
  • Title
  • Title, desc
  • Year
  • Year, desc
    Preview abstract The predictive information, the mutual information between the past and future, has been shown to be a useful representation learning auxiliary loss for training reinforcement learning agents, as the ability to model what will happen next is critical to success on many control tasks. While existing studies are largely restricted to training specialist agents on single-task settings in simulation, in this work, we study modeling the predictive information for robotic agents and its importance for general-purpose agents that are trained to master a large repertoire of diverse skills from large amounts of data. Specifically, we introduce Predictive Information QT-Opt (PI-QT-Opt), a QT-Opt agent augmented with an auxiliary loss that learns representations of the predictive information to solve up to 297 vision-based robot manipulation tasks in simulation and the real world with a single set of parameters. We demonstrate that modeling the predictive information significantly improves success rates on the training tasks and leads to better zero-shot transfer to unseen novel tasks. Finally, we evaluate PI-QT-Opt on real robots, achieving substantial and consistent improvement over QT-Opt in multiple experimental settings of varying environments, skills, and multi-task configurations. View details
    Deep Hierarchical Planning from Pixels
    Danijar Hafner
    Pieter Abbeel
    Advances in Neural Information Processing Systems (NeurIPS) (2022)
    Preview abstract Intelligent agents need to select long sequences of actions to solve complex tasks. While humans easily break down tasks into subgoals and reach them through millions of muscle commands, current artificial intelligence is limited to tasks with horizons of a few hundred decisions, despite large compute budgets. Research on hierarchical reinforcement learning aims to overcome this limitation but has proven to be challenging, current methods rely on manually specified goal spaces or subtasks, and no general solution exists. We introduce Director, a practical method for learning hierarchical behaviors directly from pixels by planning inside the latent space of a learned world model. The high-level policy maximizes task and exploration rewards by selecting latent goals and the low-level policy learns to achieve the goals. Despite operating in latent space, the decisions are interpretable because the world model can decode goals into images for visualization. Director outperforms exploration methods on tasks with sparse rewards, including 3D maze traversal with a quadruped robot from an egocentric camera and proprioception, without access to the global position or top-down view that was used by prior work. Director also learns successful behaviors across a wide range of environments, including visual control, Atari games, and DMLab levels. View details
    Multi-Game Decision Transformers
    Ofir Nachum
    Sherry Yang
    Daniel Freeman
    Winnie Xu
    Eric Victor Jang
    Henryk Witold Michalewski
    Igor Mordatch
    Advances in Neural Information Processing Systems (NeurIPS) (2022)
    Preview abstract A longstanding goal of the field of AI is a strategy for compiling diverse experience into a highly capable, generalist agent. In the subfields of vision and language, this was largely achieved by scaling up transformer-based models and training them on large, diverse datasets. Motivated by this progress, we investigate whether the same strategy can be used to produce generalist reinforcement learning agents. Specifically, we show that a single transformer-based model - with a single set of weights - trained purely offline can play a suite of up to 46 Atari games simultaneously at close-to-human performance. When trained and evaluated appropriately, we find that the same trends observed in language and vision hold, including scaling of performance with model size and rapid adaptation to new games via fine-tuning. We compare several approaches in this multi-game setting, such as online and offline RL methods and behavioral cloning, and find that our Multi-Game Decision Transformer models offer the best scalability and performance. We release the pre-trained models and code to encourage further research in this direction. Additional information, videos and code can be seen at: http://sites.google.com/view/multi-game-transformers View details
    An Empirical Investigation of Representation Learning for Imitation
    Xin Chen
    Sam Toyer
    Cody Wild
    Scott Emmons
    Satyan Alex
    Steven Wang
    Ping Luo
    Stuart Russell
    Pieter Abbeel
    Rohin Shah
    Advances in Neural Information Processing Systems (NeurIPS) (2021)
    Preview abstract Imitation learning often needs a large demonstration set in order to handle the full range of situations that an agent might find itself in during deployment. However, collecting expert demonstrations can be expensive. Recent work in vision, reinforcement learning, and NLP has shown that auxiliary representation learning objectives can reduce the need for large amounts of expensive, task-specific data. Our Empirical Investigation of Representation Learning for Imitation (EIRLI) investigates whether similar benefits apply to imitation learning. We propose a modular framework for constructing representation learning algorithms, then use our framework to evaluate the utility of representation learning for imitation across several environment suites. In the settings we evaluate, we find that existing algorithms for image-based representation learning provide limited value relative to a well-tuned baseline with image augmentations. To explain this result, we investigate differences between imitation learning and other settings where representation learning has provided significant benefit, such as image classification. Finally, we release a well-documented codebase which both replicates our findings and provides a modular framework for creating new representation learning algorithms out of reusable components. View details
    Compressive Visual Representations
    Anurag Arnab
    John Canny
    Advances in Neural Information Processing Systems (NeurIPS) (2021)
    Preview abstract Learning effective visual representations that generalize well without human supervision is a fundamental problem in order to apply Machine Learning to a wide variety of tasks. Recently, two families of self-supervised methods, contrastive learning and latent bootstrapping, exemplified by SimCLR and BYOL respectively, have made significant progress. In this work, we hypothesize that adding explicit information compression to these algorithms yields better and more robust representations. We verify this by developing SimCLR and BYOL formulations compatible with the Conditional Entropy Bottleneck (CEB) objective, allowing us to both measure and control the amount of compression in the learned representation, and observe their impact on downstream tasks. Furthermore, we explore the relationship between Lipschitz continuity and compression, showing a tractable lower bound on the Lipschitz constant of the encoders we learn. As Lipschitz continuity is closely related to robustness, this provides a new explanation for why compressed models are more robust. Our experiments confirm that adding compression to SimCLR and BYOL significantly improves linear evaluation accuracies and model robustness across a wide range of domain shifts. In particular, the compressed version of BYOL achieves 76.0% Top-1 linear evaluation accuracy on ImageNet with ResNet-50, and 78.8% with ResNet-50 2x. View details
    Predictive Information Accelerates Learning in RL
    Anthony Liu
    Yijie Guo
    Honglak Lee
    John Canny
    Advances in Neural Information Processing Systems (2020), pp. 11890-11901
    Preview abstract The Predictive Information is the mutual information between the past and the future, I(X_past; X_future). We hypothesize that capturing the predictive information is useful in RL, since the ability to model what will happen next is necessary for success on many tasks. To test our hypothesis, we train Soft Actor-Critic (SAC) agents from pixels with an auxiliary task that learns a compressed representation of the predictive information of the RL environment dynamics using a contrastive version of the Conditional Entropy Bottleneck (CEB) objective. We refer to these as Predictive Information SAC (PI-SAC) agents. We show that PI-SAC agents can substantially improve sample efficiency over challenging baselines on tasks from the DM Control suite of continuous control environments. We evaluate PI-SAC agents by comparing against uncompressed PI-SAC agents, other compressed and uncompressed agents, and SAC agents directly trained from pixels. Our implementation is given on GitHub. View details
    An Unsupervised Information-Theoretic Perceptual Quality Metric
    Sangnie Bhardwaj
    Advances in Neural Information Processing Systems 33 (2020)
    Preview abstract Tractable models of human perception have proved to be challenging to build. Hand-designed models such as MS-SSIM remain popular predictors of human image quality judgements due to their simplicity and speed. Recent modern deep learning approaches can perform better, but they rely on supervised data which can be costly to gather: large sets of class labels such as ImageNet, image quality ratings, or both. We combine recent advances in information-theoretic objective functions with a computational architecture informed by the physiology of the human visual system and unsupervised training on pairs of video frames, yielding our Perceptual Information Metric (PIM). We show that PIM is competitive with supervised metrics on the recent and challenging BAPPS image quality assessment dataset and outperforms them in predicting the ranking of image compression methods in CLIC 2020. We also perform qualitative experiments using the ImageNet-C dataset, and establish that PIM is robust with respect to architectural details. View details
    Learning Latent Dynamics for Planning from Pixels
    Danijar Hafner
    Timothy Lillicrap
    David Ha
    Honglak Lee
    James Davidson
    International Conference on Machine Learning (2019)
    Preview abstract Planning has been very successful for control tasks with known environment dynamics. To leverage planning in unknown environments, the agent needs to learn the dynamics from interactions with the world. However, learning dynamics models that are accurate enough for planning has been a long-standing challenge, especially in image-based domains. We propose the Deep Planning Network (PlaNet), a purely model-based agent that learns the environment dynamics from images and chooses actions through fast online planning in latent space. To achieve high performance, the dynamics model must accurately predict the rewards ahead for multiple time steps. We approach this using a latent dynamics model with both deterministic and stochastic transition components. Moreover, we propose a multi-step variational inference objective that we name latent overshooting. Using only pixel observations, our agent solves continuous control tasks with contact dynamics, partial observability, and sparse rewards, which exceed the difficulty of tasks that were previously solved by planning with learned models. PlaNet uses substantially fewer episodes and reaches final performance close to and sometimes higher than strong model-free algorithms. View details
    Preview abstract A new method for learning image attention masks in a semi-supervised setting based on the Information Bottleneck principle is proposed. Provided with a set of labeled images, the mask generation model is minimizing mutual information between the input and the masked image while maximizing the mutual information between the same masked image and the image label. In contrast with other approaches, our attention model produces a boolean rather than a continuous mask thus entirely concealing information from masked-out pixels. Using a set of synthetic datasets based on MNIST and CIFAR10 and a SVHN dataset, we demonstrate that our method can successfully attend to features defining the image class. We also discuss potential drawbacks of our methods and propose a mask randomization technique to alleviate one of them. View details
    Preview abstract We propose a simple, tractable lower bound on the mutual information contained in the joint generative density of any latent variable generative model: the GILBO (Generative Information Lower BOund). It offers a data independent measure of the complexity of the learned latent variable description, giving the log of the effective description length. It is well-defined for both VAEs and GANs. We compute the GILBO for 800 GANs and VAEs trained on MNIST and discuss the results. View details
    Preview abstract With the rapidly increasing popularity of deep neural networks for image recognition tasks, a parallel interest in generating adversarial examples to attack the trained models has arisen. To date, these approaches have involved either directly computing gradients with respect to the image pixels or directly solving an optimization on the image pixels. We generalize this pursuit in a novel direction: can a separate network be trained to efficiently attack another fully trained network? We demonstrate that it is possible, and that the generated attacks yield startling insights into the weaknesses of the target network. We call such a network an Adversarial Transformation Network (ATN). ATNs transform any input into an adversarial attack on the target network, while being minimally perturbing to the original inputs and the target network’s outputs. Further, we show that ATNs are capable of not only causing the target network to make an error, but can be constructed to explicitly control the type of misclassification made. We demonstrate ATNs on both simple MNIST digit classifiers and state-of-the-art ImageNet classifiers deployed by Google, Inc.: Inception ResNet-v2. View details
    Preview abstract Without explictly being designed to do so, VIB (Alemi et al., 2017) gives two natural metrics for handling and quantifying uncertainty in neural networks. In this work we present a simple case study, demonstrating that VIB can improve a networks classification calibration as well as its ability to detect out of sample data. View details
    Preview abstract In this preliminary and speculative work, we offer a unique perspective and framework to think about a wide class of existing objectives in Machine Learning. We discuss its implications, and identify some formal connections to Thermodynamics. View details
    Fixing a Broken ELBO
    Ben Poole
    Josh Dillon
    Proceedings of the 35th International Conference on Machine Learning, PMLR, Stockholmsmässan, Stockholm Sweden (2018), pp. 159-168
    Preview abstract Recent work in unsupervised representation learning has focused on learning deep directed latent variable models. Fitting these models by maximizing the marginal likelihood or evidence is typically intractable, thus a common approximation is to maximize the evidence lower bound (ELBO) instead. However, maximum likelihood training (whether exact or approximate) does not necessarily result in a good latent representation, as we demonstrate both theoretically and empirically. In particular, we derive variational lower and upper bounds on the mutual information between the input and the latent variable, and use these bounds to derive a rate-distortion curve that characterizes the tradeoff between compression and reconstruction accuracy. Using this framework, we demonstrate that there is a family of models with identical ELBO, but different quantitative and qualitative characteristics. Our framework also suggests a simple new method to ensure that latent variable models with powerful stochastic decoders do not ignore their latent code. View details
    Preview abstract The goal of this paper is to serve as a guide for selecting a detection architecture that achieves the right speed/memory/accuracy balance for a given application and platform. To this end we investigate various ways to trade accuracy for speed and memory usage in modern convolutional object detection systems. A number of successful systems have been proposed in recent years, but apples-to-apples comparisons are difficult due to different base feature extractors (e.g., VGG, Residual Networks), different default image resolutions, as well as different hardware and software platforms. We present a unified implementation of the Faster R-CNN~\cite{ren2015faster}, R-FCN~\cite{dai2016r} and SSD~\cite{liu2015ssd} systems, which we view as ``meta-architectures'' and trace out the speed/accuracy trade-off curve created by using alternative feature extractors and varying other critical parameters such as image size within each of these meta-architectures. On one extreme end of this spectrum where speed and memory are critical, we present a detector that runs at over 50 frames per second and can be deployed on a mobile device. On the opposite end in which accuracy is critical, we present a detector that achieves state-of-the-art performance measured on the COCO detection task. View details
    Preview abstract We present a variational approximation to the information bottleneck of Tishby et al. (1999). This variational approach allows us to parameterize the information bottleneck model using a neural network and leverage the reparameterization trick for efficient training. We call this method "Deep Variational Information Bottleneck", or Deep VIB. We show that models trained with the VIB objective outperform those that are trained with other forms of regularization, in terms of generalization performance and robustness to adversarial attack. View details
    G-RMI Object Detection
    Anoop Korattikara
    Menglong Zhu
    Vivek Rathod
    Zbigniew Wojna
    2nd ImageNet and COCO Visual Recognition Challenges Joint Workshop, Amsterdam (2016)
    Preview abstract We present our submission to the COCO 2016 Object Detection challenge. View details
    No Results Found