Jump to Content
Esteban Real

Esteban Real

Authored Publications
Google Publications
Other Publications
Sort By
  • Title
  • Title, descending
  • Year
  • Year, descending
    Evolving Reinforcement Learning Algorithms
    JD Co-Reyes
    Yingjie Miao
    Daiyi Peng
    Sergey Levine
    Honglak Lee
    International Conference on Learning Representations (ICLR) (2021) (to appear)
    Preview abstract We propose a method for meta-learning reinforcement learning algorithms by searching over the space of computational graphs which compute the loss function for a value-based model-free RL agent to optimize. The learned algorithms are domain-agnostic and can generalize to new environments not seen during training. Our method can both learn from scratch and bootstrap off known existing algorithms, like DQN, enabling interpretable modifications which improve performance. Learning from scratch on simple classical control and gridworld tasks, our method rediscovers the temporal-difference (TD) algorithm. Bootstrapped from DQN, we highlight two learned algorithms which obtain good generalization performance over other classical control tasks, gridworld type tasks, and Atari games. The analysis of the learned algorithm behavior shows resemblance to recently proposed RL algorithms that address overestimation in value-based methods. View details
    PyGlove: Symbolic Programming for Automated Machine Learning
    Daiyi Peng
    Xuanyi Dong
    Yifeng Lu
    Hanxiao Liu
    Gabriel Bender
    Adam Kraft
    Chen Liang
    Neural Information Processing Systems (NeurIPS) (2020)
    Preview abstract Neural networks are sensitive to hyper-parameter and architecture choices. Automated Machine Learning (AutoML) is a promising paradigm for automating these choices. Current ML software libraries, however, are quite limited in handling the dynamic interactions among the components of AutoML. For example, efficientNAS algorithms, such as ENAS and DARTS, typically require an implementation coupling between the search space and search algorithm, the two key components in AutoML. Furthermore, implementing a complex search flow, such as searching architectures within a loop of searching hardware configurations, is difficult. To summarize, changing the search space, search algorithm, or search flow in current ML libraries usually requires a significant change in the program logic. In this paper, we introduce a new way of programming AutoML based on symbolic programming. Under this paradigm, ML programs are mutable, thus can be manipulated easily by another program. As a result, AutoML can be reformulated as an automated process of symbolic manipulation. With this formulation, we decouple the triangle of the search algorithm, the search space and the child program. This decoupling makes it easy to change the search space and search algorithm (without and with weight sharing), as well as to add search capabilities to existing code and implement complex search flows. We then introduce PyGlove, a new Python library that implements this paradigm. Through case studies on ImageNet and NAS-Bench-101, we show that with PyGlove users can easily convert a static program into a search space, quickly iterate on the search spaces and search algorithms, and craft complex search flows to achieve better results. View details
    Preview abstract The effort devoted to hand-crafting image classifiers has motivated the use of architecture search to discover them automatically. Although evolutionary algorithms have been repeatedly applied to architecture search, the architectures thus discovered have remained inferior to human-crafted ones. Here we show for the first time that artificially-evolved architectures can match or surpass human-crafted and RL-designed image classifiers. In particular, our models---named AmoebaNets---achieved a state-of-the-art accuracy of 97.87% on CIFAR-10 and top-1 accuracy of 83.1% on ImageNet. Among mobile-size models, an AmoebaNet with only 5.1M parameters also achieved a state-of-the-art top-1 accuracy of 75.1% on ImageNet. We also compared this method against strong baselines. Finally, we performed platform-aware architecture search with evolution to find a model that trains quickly on Google Cloud TPUs. This method produced an AmoebaNet that won the Stanford DAWNBench competition for lowest ImageNet training cost. View details
    Preview abstract Neural networks have proven effective at solving difficult problems but designing their architectures can be challenging, even for image classification problems alone. Evolutionary algorithms provide a technique to discover such networks automatically. Despite significant computational requirements, we show that evolving models that rival large, hand-designed architectures is possible today. We employ simple evolutionary techniques at unprecedented scales to discover models for the CIFAR-10 and CIFAR-100 datasets, starting from trivial initial conditions. To do this, we use novel and intuitive mutation operators that navigate large search spaces. We stress that no human participation is required once evolution starts and that the output is a fully-trained model. Throughout this work, we place special emphasis on the repeatability of results, the variability in the outcomes and the computational requirements. View details
    YouTube-BoundingBoxes: A Large High-Precision Human-Annotated Dataset for Object Detection in Video
    Jon Shlens
    Stefano Mazzocchi
    Xin Pan
    2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 7464-7473
    Preview abstract We introduce a new large-scale data set of video URLs with densely-sampled object bounding box annotations called YouTube-BoundingBoxes (YT-BB). The data set consists of approximately 380,000 video segments about 19s long, automatically selected to feature objects in natural settings without editing or post-processing, with a recording quality often akin to that of a hand-held cell phone camera. The objects represent a subset of the MS COCO label set. All video segments were human-annotated with high-precision classification labels and bounding boxes at 1 frame per second. The use of a cascade of increasingly precise human annotations ensures a label accuracy above 95% for every class and tight bounding boxes. Finally, we train and evaluate well-known deep network architectures and report baseline figures for per-frame classification and localization to provide a point of comparison for future work. We also demonstrate how the temporal contiguity of video can potentially be used to improve such inferences. Please see the PDF file to find the URL to download the data. We hope the availability of such large curated corpus will spur new advances in video object detection and tracking. View details
    Attention for fine-grained categorization
    Andrea Frome
    International Conference on Learning Representations (ICLR 2015) workshop
    Preview abstract This paper presents experiments extending the work of Ba et al. (2014) on recurrent neural models for attention into less constrained visual environments, specifically fine-grained categorization on the Stanford Dogs data set. In this work we use an RNN of the same structure but substitute a more powerful visual network and perform large-scale pre-training of the visual network outside of the attention RNN. Most work in attention models to date focuses on tasks with toy or more constrained visual environments, whereas we present results for fine-grained categorization better than the state-of-the-art GoogLeNet classification model. We show that our model learns to direct high resolution attention to the most discriminative regions without any spatial supervision such as bounding boxes, and it is able to discriminate fine-grained dog breeds moderately well even when given only an initial low-resolution context image and narrow, inexpensive glimpses at faces and fur patterns. This and similar attention models have the major advantage of being trained end-to-end, as opposed to other current detection and recognition pipelines with hand-engineered components where information is lost. While our model is state-of-the-art, further work is needed to fully leverage the sequential input. View details
    No Results Found