Jump to Content
Abhinav Rastogi

Abhinav Rastogi

Authored Publications
Google Publications
Other Publications
Sort By
  • Title
  • Title, descending
  • Year
  • Year, descending
    Preview abstract Conversational recommendation systems (CRS) aim to recommend suitable items to users through natural language conversation. However, most CRS approaches do not effectively utilize the signal provided by these conversations. They rely heavily on explicit external knowledge e.g., knowledge graphs to augment the models' understanding of the items and attributes, which is quite hard to scale. To alleviate this, we propose an alternative information retrieval (IR)-styled approach to the CRS item recommendation task, where we represent conversations as queries and items as documents to be retrieved. We expand the document representation used for retrieval with conversations from the training set. With a simple BM25-based retriever, we show that our task formulation compares favorably with much more complex baselines using complex external knowledge on a popular CRS benchmark. We demonstrate further improvements using user-centric modeling and data augmentation to counter the cold start problem for CRSs. View details
    Preview abstract Task-oriented dialogue (TOD) systems are required to identify key information from conversations for the completion of given tasks. Such information is conventionally specified in terms of intents and slots contained in task-specific ontology or schemata. Since these schemata are designed by system developers, the naming convention for slots and intents is not uniform across tasks, and may not convey their semantics effectively. This can lead to models memorizing arbitrary patterns in data, resulting in suboptimal performance and generalization. In this paper, we propose that schemata should be modified by replacing names or notations entirely with natural language descriptions. We show that a language description-driven system exhibits better understanding of task specifications, higher performance on state tracking, improved data efficiency, and effective zero-shot transfer to unseen tasks. Following this paradigm, we present a simple yet effective Description-Driven Dialog State Tracking (D3ST) model, which relies purely on schema descriptions and an "index-picking" mechanism. We demonstrate the superiority in quality, data efficiency and robustness of our approach as measured on the MultiWOZ (Budzianowski et al.,2018), SGD (Rastogi et al., 2020), and the recent SGD-X (Lee et al., 2021) benchmarks. View details
    SGD-X: A Benchmark for Robust Generalization in Schema-Guided Dialogue Systems
    Yuan Cao
    Bin Zhang
    AAAI Conference on Artificial Intelligence, Association for the Advancement of Artificial Intelligence (2022)
    Preview abstract Zero/few-shot transfer to unseen services is a critical challenge in task-oriented dialogue research. The Schema-Guided Dialogue (SGD) dataset introduced a paradigm for enabling models to support any service in zero-shot through schemas, which describe service APIs to models in natural language. We explore the robustness of dialogue systems to linguistic variations in schemas by designing SGD-X - a benchmark extending SGD with semantically similar yet stylistically diverse variants for every schema. We observe that two top state tracking models fail to generalize well across schema variants, measured by joint goal accuracy and a novel metric for measuring schema sensitivity. Additionally, we present a simple model-agnostic data augmentation method to improve schema robustness. View details
    Preview abstract Building universal dialogue systems that operate across multiple domains/APIs and generalize to new ones with minimal overhead is a critical challenge. Recent works have leveraged natural language descriptions of schema elements to enable such systems; however, descriptions only indirectly convey schema semantics. In this work, we propose Show, Don't Tell, which prompts seq2seq models with a labeled example dialogue to show the semantics of schema elements rather than tell the model through descriptions. While requiring similar effort from service developers as generating descriptions, we show that using short examples as schema representations with large language models results in state-of-the-art performance on two popular dialogue state tracking benchmarks designed to measure zero-shot generalization - the Schema-Guided Dialogue dataset and the MultiWOZ leave-one-out benchmark. View details
    UIBert: Learning Generic Multimodal Representations for UI Understanding
    Chongyang Bai
    Srinivas Kumar Sunkara
    Xiaoxue Zang
    Ying Xu
    the 30th International Joint Conference on Artificial Intelligence (IJCAI-21) (2021)
    Preview abstract To improve the accessibility of smart devices and to simplify their usage, building models which understand user interfaces (UIs) and assist users to complete their tasks is critical. However, unique challenges are proposed by UI-specific characteristics, such as how to effectively leverage multimodal UI features that involve image, text, and structural metadata and how to achieve good performance when high-quality labeled data is unavailable. To address such challenges we introduce UIBert, a transformer-based joint image-text model trained through novel pre-training tasks on large-scale unlabeled UI data to learn generic feature representations for a UI and its components. Our key intuition is that the heterogeneous features in a UI are self-aligned, i.e., the image and text features of UI components, are predictive of each other. We propose five pretraining tasks utilizing this self-alignment among different features of a UI component and across various components in the same UI. We evaluate our method on nine real-world downstream UI tasks where UIBert outperforms strong multimodal baselines by up to 9.26% accuracy. View details
    Text-to-Text Pre-Training for Data-to-Text Tasks
    Proceedings of the 13th International Conference on Natural Language Generation (INLG 2020)
    Preview abstract We study the pre-train + fine-tune strategy for data-to-text tasks. Our experiments indicate that text-to-text pre-training in the form of T5 (Raffel et al., 2019), enables simple, end-to-end transformer based models to outperform pipelined neural architectures tailored for data-to-text generation, as well as alternatives such as BERT and GPT-2. Importantly, T5 pre-training leads to better generalization, as evidenced by large improvements on out-of-domain test sets. We hope our work serves as a useful baseline for future research, as transfer learning becomes ever more prevalent for data-to-text tasks. View details
    Template Guided Text Generation for Task-Oriented Dialogue
    Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020)
    Preview abstract Virtual assistants such as Google Assistant, Amazon Alexa, and Apple Siri enable users to interact with a large number of services and APIs on the web using natural language. In this work, we investigate two methods for Natural Language Generation (NLG) using a single domain-independent model across a large number of APIs. First, we propose a schema-guided approach which conditions the generation on a schema describing the API in natural language. Our second method investigates the use of a small number of templates, growing linearly in number of slots, to convey the semantics of the API. To generate utterances for an arbitrary slot combination, a few simple templates are first concatenated to give a semantically correct, but possibly incoherent and ungrammatical utterance. A pre-trained language model is subsequently employed to rewrite it into coherent, natural sounding text. Through automatic metrics and human evaluation, we show that our method improves over strong baselines, is robust to out-of-domain inputs and shows improved sample efficiency. View details
    MultiWOZ 2.2 : A Dialogue Dataset with Additional Annotation Corrections and State Tracking Baselines
    Xiaoxue Zang
    Srinivas Sunkara
    Jianguo Zhang
    Proceedings of the 2nd Workshop on Natural Language Processing for Conversational AI (2020), pp. 109-117
    Preview abstract MultiWOZ is a well-known task-oriented dialogue dataset containing over 10,000 annotated dialogues spanning 8 domains. It is extensively used as a benchmark for dialogue state tracking. However, recent works have reported presence of substantial noise in the dialogue state annotations. MultiWOZ 2.1 identified and fixed many of these erroneous annotations and user utterances, resulting in an improved version of this dataset. This work introduces MultiWOZ 2.2, which is a yet another improved version of this dataset. Firstly, we identify and fix dialogue state annotation errors across 17.3% of the utterances on top of MultiWOZ 2.1. Secondly, we redefine the ontology by disallowing vocabularies of slots with a large number of possible values (e.g., restaurant name, time of booking). In addition, we introduce slot span annotations for these slots to standardize them across recent models, which previously used custom string matching heuristics to generate them. We also benchmark a few state of the art dialogue state tracking models on the corrected dataset to facilitate comparison for future work. In the end, we discuss best practices for dialogue data collection that can help avoid annotation errors. View details
    Schema-Guided Dialogue State Tracking Task at DSTC8
    Xiaoxue Zang
    Srinivas Kumar Sunkara
    Pranav Khaitan
    AAAI Dialog System Technology Challenges Workshop (2020) (to appear)
    Preview abstract This paper gives an overview of the Schema-Guided Dialogue State Tracking task of the 8th Dialogue System Technology Challenge. The goal of this task is to develop dialogue state tracking models suitable for large-scale virtual assistants, with a focus on data-efficient joint modeling across domains and zero-shot generalization to new APIs. This task provided a new dataset consisting of over 16000 dialogues in the training set spanning 16 domains to highlight these challenges, and a baseline model capable of zero-shot generalization to new APIs. Twenty-five teams participated, developing a range of neural network models, exceeding the performance of the baseline model by a very high margin. The submissions incorporated a variety of pre-trained encoders and data augmentation techniques. This paper describes the task definition, dataset and evaluation methodology. We also summarize the approach and results of the submitted systems to highlight the overall trends in the state-of-the-art. View details
    Learning Question-Guided Video Representation for Multi-Turn Video Question Answering
    Guan-Lin Chao
    Semih Yavuz
    Dilek Hakkani-Tur
    Ian Lane
    Proceedings of SIGdial (2019) (to appear)
    Preview abstract Understanding and conversing about dynamic scenes is one of the key capabilities of AI agents that navigate the environment and convey useful information to humans. Video question answering is a specific scenario of such AI-human interaction where an agent generates a natural language response to a question regarding the video of a dynamic scene. Incorporating features from multiple modalities, which often provide supplementary information, is one of the challenging aspects of video question answering. Furthermore, a question often concerns only a small segment of the video, hence encoding the entire video sequence using a recurrent neural network is not computationally efficient. Our proposed question-guided video representation module efficiently generates the token-level video summary guided by each word in the question. The learned representations are then fused with the question to generate the answer. Through empirical evaluation on the Audio Visual Scene-aware Dialog (AVSD) dataset (Alamri et al., 2019a), our proposed models in single-turn and multiturn question answering achieve state-of-theart performance on several automatic natural language generation evaluation metrics. View details
    DEEPCOPY: Grounded Response Generation with Hierarchical Pointer Networks
    Semih Yavuz
    Guan-Lin Chao
    Dilek Hakkani-Tur
    Proceedings of SIGdial (2019) (to appear)
    Preview abstract Recent advances in neural sequence-to-sequence models have led to promising results for several downstream generation-based natural language processing tasks including dialogue response generation, summarization, and machine translation. However, these models are known to have several problems, especially in the context of chit-chat based dialogue systems: they tend to generate short and dull responses that are often too generic. Furthermore, these models do not ground conversational responses on knowledge and facts, resulting in turns that are not informative and engaging for users. These indeed are the essential features that dialogue response generation models should be equipped with to serve in more realistic and useful conversational applications. Recently, several dialogue datasets accompanied with relevant external knowledge have been released to facilitate research into remedying such issues encountered by traditional models by resorting to this additional information. In this paper, we propose and experiment with a series of response generation models that aim to serve in the general scenario where in addition to the dialogue context, relevant unstructured external knowledge in the form of text is also assumed to be available for models to harness. We empirically show the effectiveness of the proposed model compared to several baselines on CONVAI2 challenge. View details
    Towards Scalable Multi-domain Conversational Agents: The Schema-Guided Dialogue Dataset
    Xiaoxue Zang
    Srinivas Kumar Sunkara
    Pranav Khaitan
    arXiv preprint arXiv:1909.05855 (2019)
    Preview abstract Virtual assistants such as Google Assistant, Alexa and Siri provide a conversational interface to a large number of services and APIs spanning multiple domains. Such systems need to support an ever-increasing number of services with possibly overlapping functionality. Furthermore, some of these services have little to no training data available. Existing public datasets for task-oriented dialogue do not sufficiently capture these challenges since they cover few domains and assume a single static ontology per domain. In this work, we introduce the the Schema-Guided Dialogue (SGD) dataset, containing over 16k multi-domain conversations spanning 16 domains. Our dataset exceeds the existing task-oriented dialogue corpora in scale, while also highlighting the challenges associated with building large-scale virtual assistants. It provides a challenging testbed for a number of tasks including language understanding, slot filling, dialogue state tracking and response generation. Along the same lines, we present a schema-guided paradigm for task-oriented dialogue, in which predictions are made over a dynamic set of intents and slots, provided as input, using their natural language descriptions. This allows a single dialogue system to easily support a large number of services and facilitates simple integration of new services without requiring additional training data. Building upon the proposed paradigm, we release a zero-shot dialogue state tracking model that achieves state-of-the-art performance on recent benchmark datasets. View details
    Preview abstract This paper presents a novel approach for multi-task learning of language understanding (LU) and dialogue state tracking (DST) in task-oriented dialogue systems. Multi-task training enables the sharing of lower layers of the neural network and improves the performance of LU and DST while reducing the number of network parameters. In our proposed framework, DST operates on a set of candidate values for each slot that has been mentioned so far. These candidate sets are generated using LU slot annotations for the current user utterance, dialogue acts corresponding to the preceding system utterance and the dialogue state estimated for the previous turn, enabling DST to handle slots with a large or unbounded set of possible values and deal with slot values not seen during training. Furthermore, to bridge the gap between training and inference, we investigate the use of scheduled sampling on LU output for the current user utterance as well as the DST output for the preceding turn. View details
    Building a Conversational Agent Overnight with Dialogue Self-Play
    Pararth Shah
    Dilek Hakkani-Tur
    Gokhan Tur
    Neha Nayak
    Larry Heck
    arxiv.org (2018)
    Preview abstract We propose Machines Talking To Machines (M2M), a framework combining automation and crowdsourcing to rapidly bootstrap end-to-end dialogue agents for goal-oriented dialogues in arbitrary domains. M2M scales to new tasks with just a task schema and an API client from the dialogue system developer, but it is also customizable to cater to task-specific interactions. Compared to the Wizard-of-Oz approach for data collection, M2M achieves greater diversity and coverage of salient dialogue flows while maintaining the naturalness of individual utterances. In the first phase, a simulated user bot and a domain-agnostic system bot converse to exhaustively generate dialogue "outlines", i.e. sequences of template utterances and their semantic parses. In the second phase, crowd workers provide contextual rewrites of the dialogues to make the utterances more natural while preserving their meaning. The entire process can finish within a few hours. We propose a new corpus of 3,000 dialogues spanning 2 domains collected with M2M, and present comparisons with popular dialogue datasets on the quality and diversity of the surface forms and dialogue flows. View details
    Preview abstract In task-oriented dialogue systems, spoken language understanding, or SLU, refers to the task of parsing natural language user utterances into semantic frames. Making use of context from prior dialogue history holds the key to more effective SLU. State of the art approaches to SLU use memory networks to encode context by processing multiple utterances from the dialogue at each turn, resulting in significant trade-offs between accuracy and computational efficiency. On the other hand, downstream components like the dialogue state tracker (DST) already keep track of the dialogue state, which can serve as a summary of the dialogue history. In this work, we propose novel approaches that use an embedded representation of the dialogue state as context for SLU. More specifically, our architecture includes a separate recurrent neural network (RNN) based encoding module that accumulates dialogue context to guide the frame parsing sub-tasks and can be shared between SLU and DST. In our experiments, we demonstrate the effectiveness of our approach on dialogues from two domains. View details
    Scalable Multi-Domain Dialogue State Tracking
    Dilek Hakkani-Tur
    Larry Heck
    Proceedings of IEEE ASRU (2017)
    Preview abstract Dialogue state tracking (belief tracking) is a key component of task-oriented dialogue systems and aims to estimate the user's goal at each user turn. State of the art approaches for state tracking rely on deep learning methods. These approaches represent dialogue state as a distribution over all possible value s for a slot, for each slot present in the ontology. Such a representation is not scalable for slots for which the set of possible values is unbounded (e.g., date, time or location) or dynamic (e.g., movies, usernames). We introduce a novel framework for state tracking which is independent of the value-set for a slot. The key idea is to obtain a set of values of interest (candidate set) which is bounded in size for each slot and represent the state as a distribution over the candidate set. Such an approach solves the problem of slot-scalability by making the state representation independent of the value set. Furthermore, by leveraging the slot-independent architecture and transfer learning, our model scales well and can be quickly bootstrapped to unseen domains with just a few training examples. View details
    A Fast Unified Model for Parsing and Sentence Understanding
    Samuel R. Bowman
    Jon Gauthier
    Christopher D. Manning
    Christopher Potts
    Proceedings of ACL (2016)
    Efficient melodic query based audio search for Hindustani vocal compositions
    Kaustuv Kanti Ganguli
    Vedhas Pandit
    Prithvi Kantan
    Preeti Rao
    ISMIR (2015)