Jump to Content

WinoDict: Probing language models for in-context language acquisition

William Weston Cohen
EACL (2022) (to appear)


By nature of the cost and time required to train Large Language Models (LLMs), the embedded knowledge within is usually frozen at the moment their training data is collected. As a result, LLMs have been shown to suffer from diachronic degradation. The in-context learning paradigm can provide a workaround for this limitation by supplying relevant information at inference time. We introduce a new benchmark to evaluate LLMs for one particular but critical aspect of diachronic change: language acquisition. To that end, we rewrite Winograd-style co-reference resolution problems by replacing a word for a new synthetic but plausible English word. The meaning of the word is given to the model in the prompt via a dictionary definition. We show that the accuracy of LLMs compared to the original Winograd tasks decreases radically in our benchmark and we believe this serves as a measure of progress for future models.