Rethinking Testing of Machine Learned Models

Christina Greer
NeurIPS workshop(2022)
Google Scholar


Testing, within the machine learning (ML) community, has been predominantly about assessing a learned model's predictive performance measured against a test dataset. This test dataset is often a held-out subset of the dataset used to train the model, and hence expected to follow the same data distribution as the training dataset. While recent work on robustness testing within ML has pointed to the importance of testing against distributional shifts, these efforts also focus on estimating the likelihood of the model making an error against a reference dataset/distribution. In this paper, we argue that this view of testing actively discourages researchers and developers from looking into many other sources of robustness failures, for instance corner cases. We draw parallels with decades of work within software engineering testing focused on assessing a software system against various stress conditions, including corner cases, as opposed to solely focusing on average-case behaviour. Finally, we put forth a set of recommendations to broaden the view of machine learning testing to a rigorous practice.

Research Areas