Jump to Content

Neural Stochastic Dual Dynamic Programming

Zia M Syed
ICLR 2022 (2022)

Abstract

Stochastic dual dynamic programming~(SDDP) is one of the state-of-the-art algorithm for multi-stage stochastic optimization, yet its cost exponentially increases w.r.t. the size of decision variables, therefore, quickly becomes inapplicable for high-dimension problems. We introduce a neuralized component into SDDP, which outputs a \emph{piece-wise linear function} in a \emph{low-dimension} space to approximate the value function, based on the \emph{context of the problem instances}. The neuralized component will consistently evolve to abstract effective low-dimension action space and improve the quality of value function approximation for each problem based on prior successful experiences. It is seamlessly integrated with SDDP, formed our neural enhanced solver,~\AlgName~(\algshort), which achieves the optimality \emph{without loss of accuracy} in \emph{faster speed} for high-dimension and long-horizon multi-stage stochastic optimizations. We conduct thorough empirical experiments to demonstrate the benefits of \algshort from transferability on scalability.~\algshort significantly outperforms the competitors, including SDDP and variants of RL algorithms, in terms of solution quality and feasibility, and computational speed.

Research Areas