ML for Flood Forecasting at Scale

Sella Nevo
Ami Wiesel
Guy Shalev
Mor Schlesinger
Oleg Zlydenko
Ran El-Yaniv
Yotam Gigi
Zach Moshe
Proceedings of the NIPS AI for Social Good Workshop(2018)


Effective riverine flood forecasting at scale is hindered by a multitude of factors, most notably the need to rely on human calibration in current methodology, the limited amount of data for a specific location, and the computational difficulty of building continent/global level models that are sufficiently accurate. Machine learning (ML) is primed to be useful in this scenario: learned models often surpass human experts in complex high-dimensional scenarios, and the framework of transfer or multitask learning is an appealing solution for leveraging local signals to achieve improved global performance. We propose to build on these strengths and develop ML systems for timely and accurate riverine flood prediction.