Jump to Content

A new dog learns old tricks: RL finds classic optimization algorithms

Weiwei Kong
Christopher Liaw
D. Sivakumar
Seventh International Conference on Learning Representations (ICLR) (2019)


We ask whether reinforcement learning can find theoretically optimal algorithms for online optimization problems, and introduce a novel learning framework in this setting. To answer this question, we introduce a number of key ideas from traditional algorithms and complexity theory. Specifically, we introduce the concept of adversarial distributions (universal and high-entropy training sets), which are distributions that encourage the learner to find algorithms that work well in the worst case. We test our new ideas on the AdWords problem, the online knapsack problem, and the secretary problem. Our results indicate that the models have learned behaviours that are consistent with the optimal algorithms for these problems derived using the online primal-dual framework.