Publications
Our teams aspire to make discoveries that impact everyone, and core to our approach is sharing our research and tools to fuel progress in the field.
Our teams aspire to make discoveries that impact everyone, and core to our approach is sharing our research and tools to fuel progress in the field.
Sort By
1 - 15 of 10132 publications
On the Benefits of Traffic “Reprofiling” The Multiple Hops Case – Part I
Henry Sariowan
Jiaming Qiu
Jiayi Song
Roch Guerin
IEEE/ACM Transactions on Networking (2024)
Preview abstract
Abstract—This paper considers networks where user traffic is regulated through deterministic traffic profiles, e.g. token buckets, and requirescleanguaranteed hard delay bounds. The network’s goal is to minimize the resources it needs to meet those cleanrequirementsbounds. The paper explores how reprofiling, i.e. proactively modifying how user traffic enters the network, can be of benefit. Reprofiling produces “smoother” flows but introduces an up-front access delay that forces tighter network delays. The paper explores this trade-off and demonstrates that, unlike what holds in the single-hop case, reprofiling can be of benefit even when “optimal”cleansophisticated schedulers are available at each hop.
View details
Preview abstract
Service providers of large language model (LLM) applications collect user instructions in the wild and use them in further aligning LLMs with users’ intentions. These instructions, which potentially contain sensitive information, are annotated by human workers in the process. This poses a new privacy risk not addressed by the typical private optimization. To this end, we propose using synthetic instructions to replace real instructions in data annotation and model fine-tuning. Formal differential privacy is guaranteed by generating those synthetic instructions using privately fine-tuned generators. Crucial in achieving the desired utility is our novel filtering algorithm that matches the distribution of the synthetic instructions to that of the real ones. In both supervised fine-tuning and reinforcement learning from human feedback, our extensive experiments demonstrate the high utility of the final set of synthetic instructions by showing comparable results to real instructions. In supervised fine-tuning, models trained with private synthetic instructions outperform leading open-source models such as Vicuna
View details
Making Images from Images: Tightly Constrained Parallel Denoising
Ashwin Baluja
European Conference on Computer Vision, AI for Visual Arts Workshop and Challenges (2024)
Preview abstract
We present methods to transform an image into a novel one of any subject matter simply by rearranging the image’s tiles. Our method extends and improves recent work in the generation of optical illusions by discovering the optimal arrangement of the image’s tiles simultaneously with the image generation. In addition to producing images that more accurately represent the subject matter, this technique allows us to address a much broader class of problems than previously possible. By learning the image transforms, we allow any source image to be pre- specified; any existing image (e.g. the Mona Lisa) can be transformed to a novel subject. We formulate this as a tightly constrained optimization problem and address it through alternating the steps of image diffusion and energy minimization using optimal matching. Under our formulation, a simple method to extend this to infinite copies of the source image is also given. Unlike previous methods, as the number of tiles grows the problem becomes easier and the results become better.
View details
SkipWriter: LLM-Powered Abbreviated Writing on Tablets
Zheer Xu
Mukund Varma T
Proceedings of UIST 2024 (2024)
Preview abstract
Large Language Models (LLMs) may offer transformative opportunities for text input, especially for physically demanding modalities like handwriting. We studied a form of abbreviated handwriting by designing, developing and evaluating a prototype, named SkipWriter, that convert handwritten strokes of a variable-length, prefix- based abbreviation (e.g., “ho a y” as handwritten strokes) into the intended full phrase (e.g., “how are you” in the digital format) based
on preceding context. SkipWriter consists of an in-production hand-writing recognizer and a LLM fine-tuned on this skip-writing task. With flexible pen input, SkipWriter allows the user to add and revise prefix strokes when predictions don’t match the user’s intent. An user evaluation demonstrated a 60% reduction in motor movements with an average speed of 25.78 WPM. We also showed that this reduction is close to the ceiling of our model in an offline simulation.
View details
The Case for Globalizing Fairness: A Mixed Methods Study on the Perceptions of Colonialism, AI and Health in Africa
Iskandar Haykel
Aisha Walcott-Bryant
Sanmi Koyejo
Preview abstract
With growing machine learning (ML) and large language model applications in healthcare, there have been calls for fairness in ML to understand and mitigate ethical concerns these systems may pose. Fairness has implications for health in Africa, which already has inequitable power imbalances between the Global North and South. This paper seeks to explore fairness for global health, with Africa as a case study.
We conduct a scoping review to propose fairness attributes for consideration in the African context and delineate where they may come into play in different ML-enabled medical modalities. We then conduct qualitative research studies with 625 general population study participants in 5 countries in Africa and 28 experts in ML, Health, and/or policy focussed on Africa to obtain feedback on the proposed attributes. We delve specifically into understanding the interplay between AI, health and colonialism.
Our findings demonstrate that among experts there is a general mistrust that technologies that are solely developed by former colonizers can benefit Africans, and that associated resource constraints due to pre-existing economic and infrastructure inequities can be linked to colonialism. General population survey responses found about an average of 40% of people associate an undercurrent of colonialism to AI and this was most dominant amongst participants from South Africa. However the majority of the general population participants surveyed did not think there was a direct link between AI and colonialism.Colonial history, country of origin, National income level were specific axes of disparities that participants felt would cause an AI tool to be biased
This work serves as a basis for policy development around Artificial Intelligence for health in Africa and can be expanded to other regions.
View details
Model-based Optimization of Superconducting Qubit Readout
Alex Opremcak
Alexandre Bourassa
Alexander Korotkov
Jimmy Chen
Physical Review Letters, 132 (2024), pp. 100603
Preview abstract
Measurement is one of the essential components of quantum algorithms, and for superconducting qubits it is often the most error prone. Here, we demonstrate a model-based readout optimization achieving low measurement errors while avoiding detrimental side-effects. For simultaneous and mid-circuit measurements across 17 qubits we observe 1.5% error per qubit with a duration of 500 ns end-to-end and minimal excess reset error from residual resonator photons. We also suppress measurement-induced state transitions and achieve a qubit leakage rate limited by natural heating.This technique can scale to hundreds of qubits, and be used to enhance performance of error-correcting codes as well as near-term applications
View details
USM-SCD: USM-Based Multilingual Speaker Change Detection
Yongqiang Wang
Jason Pelecanos
Yu Zhang
Yiling Huang
Han Lu
ICASSP 2024 - 2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 11801-11805
Preview abstract
We introduce a multilingual speaker change detection model (USM- SCD) that can simultaneously detect speaker turns and perform ASR for 96 languages. This model is adapted from a speech foundation model trained on a large quantity of supervised and unsupervised data, demonstrating the utility of fine-tuning from a large generic foundation model for a downstream task. We analyze the performance of this multilingual speaker change detection model through a series of ablation studies. We show that the USM-SCD model can achieve more than 75% average speaker change detection F1 score across a test set that consists of data from 96 languages. On American English, the USM-SCD model can achieve an 85.8% speaker change detection F1 score across various public and internal test sets, beating the previous monolingual baseline model by 21% relative. We also show that we only need to fine-tune one-quarter of the trainable model parameters to achieve the best model performance. The USM-SCD model exhibits state-of-the-art ASR quality compared with a strong public ASR baseline, making it suitable to handle both tasks with negligible additional computational cost.
View details
Mindful Breathing as an Effective Technique in the Management of Hypertension
Aravind Natarajan
Hulya Emir-Farinas
Hao-Wei Su
Frontiers in Physiology, N/A (2024), N/A
Preview abstract
Introduction: Hypertension is one of the most important, modifiable risk factors for cardiovascular disease. The popularity of wearable devices provides an opportunity to test whether device guided slow mindful breathing may serve as a non-pharmacological treatment in the management of hypertension.
Methods: Fitbit Versa-3 and Sense devices were used for this study. In addition, participants were required to own an FDA or Health Canada approved blood pressure measuring device. Advertisements were shown to 655,910 Fitbit users, of which 7,365 individuals expressed interest and filled out the initial survey. A total of 1,918 participants entered their blood pressure readings on at least 1 day and were considered enrolled in the study. Participants were instructed to download a guided mindful breathing app on their smartwatch device, and to engage with the app once a day prior to sleep. Participants measured their systolic and diastolic blood pressure prior to starting each mindful breathing session, and again after completion. All measurements were self reported. Participants were located in the United States or Canada.
Results: Values of systolic and diastolic blood pressure were reduced following mindful breathing. There was also a decrease in resting systolic and diastolic measurements when measured over several days. For participants with a systolic pressure ≥ 130 mmHg, there was a decrease of 9.7 mmHg following 15 min of mindful breathing at 6 breaths per minute. When measured over several days, the resting systolic pressure decreased by an average of 4.3 mmHg.
Discussion: Mindful breathing for 15 min a day, at a rate of 6 breaths per minute is effective in lowering blood pressure, and has both an immediate, and a short term effect (over several days). This large scale study demonstrates that device guided mindful breathing with a consumer wearable for 15 min a day is effective in lowering blood pressure, and a helpful complement to the standard of care.
View details
Augmented Object Intelligence with XR-Objects
Mustafa Doga Dogan
Karan Ahuja
Andrea Colaco
Proceedings of the 37th Annual ACM Symposium on User Interface Software and Technology (UIST), ACM (2024), pp. 1-15
Preview abstract
Seamless integration of physical objects as interactive digital entities remains a challenge for spatial computing. This paper explores Augmented Object Intelligence (AOI) in the context of XR, an interaction paradigm that aims to blur the lines between digital and physical by equipping real-world objects with the ability to interact as if they were digital, where every object has the potential to serve as a portal to digital functionalities. Our approach utilizes real-time object segmentation and classification, combined with the power of Multimodal Large Language Models (MLLMs), to facilitate these interactions without the need for object pre-registration. We implement the AOI concept in the form of XR-Objects, an open-source prototype system that provides a platform for users to engage with their physical environment in contextually relevant ways using object-based context menus. This system enables analog objects to not only convey information but also to initiate digital actions, such as querying for details or executing tasks. Our contributions are threefold: (1) we define the AOI concept and detail its advantages over traditional AI assistants, (2) detail the XR-Objects system’s open-source design and implementation, and (3) show its versatility through various use cases and a user study.
View details
USER-LLM: Efficient LLM Contextualization with User Embedding
Jiaxing Wu
Neo Wu
Devora Berlowitz
Sushant Prakash
Bradley Green
Shawn O'Banion
Jun Xie
ArXiv (2024) (to appear)
Preview abstract
Large language models (LLMs) have revolutionized natural language processing. However, effectively incorporating complex and potentially noisy user interaction data remains a challenge. To address this, we propose User-LLM, a novel framework that leverages user embeddings to contextualize LLMs. These embeddings, distilled from diverse user interactions using self-supervised pretraining, capture latent user preferences and their evolution over time. We integrate these user embeddings with LLMs through cross-attention and soft-prompting, enabling LLMs to dynamically adapt to user context. Our comprehensive experiments on MovieLens, Amazon Review, and Google Local Review datasets demonstrate significant performance gains across various tasks. Notably, our approach outperforms text-prompt-based contextualization on long sequence tasks and tasks that require deep user understanding while being computationally efficient. We further incorporate Perceiver layers to streamline the integration between user encoders and LLMs, reducing computational demands.
View details
Preview abstract
Detecting offensive content in text is an increasingly central challenge for both social-media platforms and AI-driven technologies. However offensiveness remains a subjective phenomenon as perspectives differ across sociodemographic characteristics, as well as cultural norms and moral values. This intricacy is largely ignored in the current AI-focused approaches for detecting offensiveness or related concepts such as hate speech and toxicity detection. We frame the task of determining offensiveness as essentially a matter of moral judgment --- deciding the boundaries of ethically wrong vs. right language to be used or generated within an implied set of sociocultural norms. In this paper, we investigate how judgment of offensiveness varies across diverse global cultural regions, and the crucial role of moral values in shaping these variations. Our findings highlight substantial cross-cultural differences in perceiving offensiveness, with moral concerns about Caring and Purity as the mediating factor driving these differences. These insights are of importance as AI safety protocols, shaped by human annotators' inputs and perspectives, embed their moral values which do not align with the notions of right and wrong in all contexts, and for all individuals.
View details
Towards a Complete Benchmark on Video Moment Localization
Jinyeong Chae
Donghwa Kim
Kwanseok Kim
Doyeon Lee
Sangho Lee
Seongsu Ha
Jonghwan Mun
Wooyoung Kang
Byungseok Roh
(2024)
Preview abstract
In this paper, we propose and conduct a comprehensive benchmark on moment localization task, which aims to retrieve a segment that corresponds to a text query from a single untrimmed video. Our study starts from an observation that most moment localization papers report experimental results only on a few datasets in spite of availability of far more benchmarks. Thus, we conduct an extensive benchmark study to measure the performance of representative methods on widely used 7 datasets. Looking further into the details, we pose additional research questions and empirically verify them, including if they rely on unintended biases introduced by specific training data, if advanced visual features trained on classification task transfer well to this task, and if computational cost of each model pays off. With a series of these experiments, we provide multifaceted evaluation of state-of-the-art moment localization models. Codes are available at https://github.com/snuviplab/MoLEF.
View details
A Decentralized SDN Architecture for the WAN
Nitika Saran
Ashok Narayanan
Sylvia Ratnasamy
Ankit Singla
Hakim Weatherspoon
2024 ACM Special Interest Group on Data Communication (SIGCOMM) (2024)
Preview abstract
Motivated by our experiences operating a global WAN, we argue that SDN’s reliance on infrastructure external to the data plane has significantly complicated the challenge of maintaining high availability. We propose a new decentralized SDN (dSDN) architecture in which SDN control logic instead runs within routers, eliminating the control plane’s reliance on external infrastructure and restoring fate sharing between control and data planes.
We present dSDN as a simpler approach to realizing the benefits of SDN in the WAN. Despite its much simpler design, we show that dSDN is practical from an implementation viewpoint, and outperforms centralized SDN in terms of routing convergence and SLO impact.
View details
Levels of Multimodal Interaction
Chinmay Kulkarni
ICMI Companion '24: Companion Proceedings of the 26th International Conference on Multimodal Interaction (2024)
Preview abstract
Large Multimodal Models (LMMs) like OpenAI's GPT4o and Google's Gemini, introduced in 2024, process multiple modalities, enabling significant advances in multimodal interaction. Inspired by frameworks for self-driving cars and AGI, this paper proposes "Levels of Multimodal Interaction" to guide research and development. The four levels are: basic multimodality (0), single modalities in turn-taking; combined multimodality (1), fused interpretation of multiple modalities; humanlike (2), natural interaction flow with additional communication signals; and beyond humanlike (3), surpassing human capabilities and include underlying hidden signals with the potential for transformational human-AI integration. LMMs have progressed from Level 0 to 1, with Level 2 next.
Level 3 sets a speculative target that multimodal interaction research could help achieve, where interaction becomes more natural and ultimately surpasses human capabilities. Eventually, such Level 3 multimodal interaction could lead to greater human-AI integration and transform human performance. This anticipated shift, in turn, introduces considerations, particularly around safety, agency and control of AI systems.
View details
See Through Vehicles: Fully Occluded Vehicle Detection with Millimeter Wave Radar
Chenming He
Chengzhen Meng
Chunwang He
Beibei Wang
Yubo Yan
Yanyong Zhang
MobiCom 2024: The 30th Annual International Conference On Mobile Computing And Networking
Preview abstract
A crucial task in autonomous driving is to continuously detect nearby vehicles. Problems thus arise when a vehicle is occluded and becomes “unseeable”, which may lead to accidents. In this study, we develop mmOVD, a system that can detect fully occluded vehicles by involving millimeter-wave radars to capture the ground-reflected signals passing beneath the blocking vehicle’s chassis. The foremost challenge here is coping with ghost points caused by frequent multi-path reflections, which highly resemble the true points. We devise a set of features that can efficiently distinguish the ghost points by exploiting the neighbor points’ spatial and velocity distributions. We also design a cumulative clustering algorithm to effectively aggregate the unstable ground reflected radar points over consecutive frames to derive the bounding boxes of the vehicles.
We have evaluated mmOVD in both controlled environments and real-world environments. In an underground garage and two campus roads, we conducted controlled experiments in 56 scenes with 8 vehicles, including a minibus and a motorcycle. Our system accurately detects occluded vehicles for the first time, with a 91.1% F1 score for occluded vehicle detection and a 100% success rate for occlusion event detection. More importantly, we drove 324km on crowded roads at a speed up to 70km per hour and show we could achieve an occlusion detection success rate of 92% and a low false alarm rate of 4% with only 10% of the training data in complex real-world environments.
View details