Jump to Content

Thierry Coppey

Thierry joined Google Research Europe in mid 2018. Before that, he received a Master's degree from EPFL, Switzerland. His research interests include Reinforcement Learning.

Research Areas

Authored Publications
Google Publications
Other Publications
Sort By
  • Title
  • Title, descending
  • Year
  • Year, descending
    SmartChoices: Hybridizing Programming and Machine Learning
    Alexander Daryin
    Thomas Deselaers
    Nikhil Sarda
    Reinforcement Learning for Real Life (RL4RealLife) Workshop in the 36th International Conference on Machine Learning (ICML), (2019)
    Preview abstract We present SmartChoices, an approach to making machine learning (ML) a first class citizen in programming languages which we see as one way to lower the entrance cost to applying ML to problems in new domains. There is a growing divide in approaches to building systems: on the one hand, programming leverages human experts to define a system while on the other hand behavior is learned from data in machine learning. We propose to hybridize these two by providing a 3-call API which we expose through an object called SmartChoice. We describe the SmartChoices-interface, how it can be used in programming with minimal code changes, and demonstrate that it is an easy to use but still powerful tool by demonstrating improvements over not using ML at all on three algorithmic problems: binary search, QuickSort, and caches. In these three examples, we replace the commonly used heuristics with an ML model entirely encapsulated within a SmartChoice and thus requiring minimal code changes. As opposed to previous work applying ML to algorithmic problems, our proposed approach does not require to drop existing implementations but seamlessly integrates into the standard software development workflow and gives full control to the software developer over how ML methods are applied. Our implementation relies on standard Reinforcement Learning (RL) methods. To learn faster, we use the heuristic function, which they are replacing, as an initial function. We show how this initial function can be used to speed up and stabilize learning while providing a safety net that prevents performance to become substantially worse -- allowing for a safe deployment in critical applications in real life. View details
    No Results Found