Jump to Content

CHIH-KUAN YEH

Research Areas

Authored Publications
Google Publications
Other Publications
Sort By
  • Title
  • Title, desc
  • Year
  • Year, desc
    Preview abstract Deploying large language models (LLMs) is challenging because they are memory inefficient and compute-intensive for practical applications. In reaction, researchers train smaller task-specific models by either finetuning with human labels or distilling using LLM-generated labels. However, finetuning and distillation require large amounts of training data to achieve comparable performance to LLMs. We introduce Distilling step-by-step, a new mechanism that (a) trains smaller models that outperform LLMs, and (b) achieves so by leveraging less training data needed by finetuning or distillation. Our method extracts LLM rationales as additional supervision for small models within a multi-task training framework. We present three findings across 4 NLP benchmarks: First, compared to both finetuning and distillation, our mechanism achieves better performance with much fewer labeled/unlabeled training examples. Second, compared to LLMs, we achieve better performance using substantially smaller model sizes. Third, we reduce both the model size and the amount of data required to outperform LLMs; our 770M T5 model outperforms the 540B PaLM model using only 80% of available data on a benchmark task. View details
    Preview abstract Concept-based explanations can be a key direction to understand how DNNs make decisions. In this paper, we study concept-based explainability in a systematic framework. First, we define the notion of completeness, which quantifies how sufficient a particular set of concepts is in explaining the model's behavior. Based on performance and variability motivations, we propose two definitions to quantify completeness. We show that they yield the commonly-used PCA method under certain assumptions. Next, we study two additional constraints to ensure the interpretability of discovered concept, based on sparsity principles. Through systematic experiments, on specifically-designed synthetic dataset and real-world text and image datasets, we demonstrate the superiority of our framework in finding concepts that are complete (in explaining the decision) and that are interpretable. View details
    No Results Found