Jump to Content

Understanding Generative Retrieval at Scale

Ronak Pradeep
Jimmy Lin
EMNLP 2023

Abstract

Popularized by the Differentiable Search Index, the emerging paradigm of Generative Retrieval re-frames the classic information retrieval problem into a sequence-to-sequence modeling task, forgoing external indices and encoding an entire document corpus into the parameters of a single transformer. Although many different approaches have been proposed to improve the effectiveness of generative retrieval, they have only been evaluated on document corpora on the order of 100k in size. We conduct the first study of generative retrieval techniques across various corpus scales, ultimately scaling up to the entire MS MARCO passage ranking task consisting of 8.8M passages. After ablating for the most promising techniques, we then consider model scales up to 11B parameters. Along the way, we uncover several findings about scaling generative retrieval to millions of passages. Notably, the use of synthetic query generation as document representation is the only modeling technique critical to retrieval effectiveness. In addition, we find that the strongest performing architecture modifications from the literature at T5-Base initialization only perform well due to added parameters. Naively scaling to a comparable model size outperforms these proposed techniques. Finally, while model scale is necessary as corpus size increases, we find that given existing techniques, scaling model parameters past a certain point can be detrimental for retrieval effectiveness. This result might be counter-intuitive to the commonly held belief that model capacity is a limiting factor for scaling generative retrieval to larger corpora, and suggests the need for more fundamental improvements. In general, we believe that these findings will be highly valuable for the community to clarify the state of generative retrieval at scale and highlight the challenges currently facing the paradigm.