TossingBot: Learning to Throw Arbitrary Objects with Residual Physics
Abstract
Throwing is a means to increase the capabilities of a manipulator by exploiting dynamics, a form of dynamic extrinsic dexterity. In the case of pick-and-place for example, throwing can enable a robot arm to rapidly place objects into selected boxes outside its maximum kinematic range — improving its physical reachability and picking speed. However, precisely throwing arbitrary objects in unstructured settings presents many challenges: from acquiring reliable pre-throw conditions (e.g. grasp of the object) to handling varying object-centric properties (e.g. mass distribution, friction, shape) and dynamics (e.g. aerodynamics). In this work, we propose an end-to-end formulation that jointly learns to infer control parameters for grasping and throwing motion primitives from visual observations (images of arbitrary objects in a bin) through trial and error. Within this formulation, we investigate the synergies between grasping and throwing (i.e., learning grasps that enable more accurate throws) and between simulation and deep learning (i.e. using deep networks to predict residuals on top of control parameters predicted by a physics simulator). The resulting system, TossingBot, is able to grasp and successfully throw arbitrary objects into boxes located outside its maximum reach range at 500+ mean picks per hour (600+ grasps per hour with 85% throwing accuracy); and generalizes to new objects and target locations.