Jump to Content

Sliding Window Algorithms for k-Clustering Problems

Google Scholar


The sliding window model of computation captures scenarios in which data is arriving continuously, but only the latest $w$ elements should be used for analysis. The goal is to design algorithms that update the solution efficiently with each arrival rather than recomputing it from scratch. In this work, we focus on $k$-clustering problems such as $k$-means and $k$-median. In this setting, we give simple and practical algorithms that come with stronger performance guarantees than previously known results. Empirically, we show that our methods store only a small fraction of the data, are orders of magnitude faster, and find solutions with cost only slightly worse than those returned by algorithms that have access to the full dataset.