Jump to Content

Optimal Multi-Way Number Partitioning

Ethan L. Schreiber
Richard E. Korf
Journal of the ACM, vol. 65 (2018)


The NP-hard number-partitioning problem is to separate a multiset S of n positive integers into k subsets such that the largest sum of the integers assigned to any subset is minimized. The classic application is scheduling a set of n jobs with different runtimes on k identical machines such that the makespan, the elapsed time to complete the schedule, is minimized. The two-way number-partitioning decision problem is one of the original 21 problems that Richard Karp proved NP-complete. It is also one of Garey and Johnson’s six fundamental NP-complete problems and the only one based on numbers. This article explores algorithms for solving multi-way number-partitioning problems optimally. We explore previous algorithms as well as our own algorithms, which fall into three categories: sequential number partitioning (SNP), a branch-and-bound algorithm; binary-search improved bin completion (BSIBC), a bin-packing algorithm; and cached iterative weakening (CIW), an iterative weakening algorithm. We show experimentally that, for large random numbers, SNP and CIW are state-of-the-art algorithms depending on the values of n and k. Both algorithms outperform the previous state of the art by up to seven orders of magnitude in terms of runtime.