Jump to Content

LibriTTS-R: Restoration of a Large-Scale Multi-Speaker TTS Corpus

Yifan Ding
Kohei Yatabe
Nobuyuki Morioka
Yu Zhang
Wei Han
Interspeech 2023 (2023)


This paper introduces a new speech dataset called ``LibriTTS-R'' designed for text-to-speech (TTS) use. It is derived by applying speech restoration to the LibriTTS corpus, which consists of 585 hours of speech data at 24 kHz sampling rate from 2,456 speakers and the corresponding texts. The constituent samples of LibriTTS-R are identical to those of LibriTTS, with only the sound quality improved. Experimental results show that the LibriTTS-R ground-truth samples showed significantly improved sound quality compared to those in LibriTTS. In addition, neural end-to-end TTS trained with LibriTTS-R achieved speech naturalness on par with that of the ground-truth samples. The corpus is freely available for download from [URL-HERE]

Research Areas