Jump to Content

In Silico Labeling: Predicting Fluorescent Labels in Unlabeled Images

Eric Christiansen
Mike Ando
Ashkan Javaherian
Gaia Skibinski
Scott Lipnick
Elliot Mount
Alison O'Neil
Kevan Shah
Alicia K. Lee
Piyush Goyal
Liam Fedus
Andre Esteva
Lee Rubin
Steven Finkbeiner
Cell (2018)


Imaging is a central method in life sciences, and the drive to extract information from microscopy approaches has led to methods to fluorescently label specific cellular constituents. However, the specificity of fluorescent labels varies, labeling can confound biological measurements, and spectral overlap limits the number of labels to a few that can be resolved simultaneously. Here, we developed a deep learning computational approach called “in silico labeling (ISL)” that reliably infers information from unlabeled biological samples that would normally require invasive labeling. ISL predicts different labels in multiple cell types from independent laboratories. It makes cell type predictions by integrating in silico labels, and is not limited by spectral overlap. The network learned generalized features, enabling it to solve new problems with small training datasets. Thus, ISL provides biological insights from images of unlabeled samples for negligible additional cost that would be undesirable or impossible to measure directly.