Jump to Content

Generative Information Retrieval (slides)



Historically, information retrieval systems have all followed the same paradigm: information seekers frame their needs in the form of a short query, the system selects a small set of relevant results from a corpus of available documents, rank-orders the results by decreasing relevance, possibly excerpts a responsive passage for each result, and returns a list of references and excerpts to the user. Retrieval systems typically did not attempt fusing information from multiple documents into an answer and displaying that answer directly. This was largely due to available technology: at the core of each retrieval system is an index that maps lexical tokens or semantic embeddings to document identifiers. Indices are designed for retrieving responsive documents; they do not support integrating these documents into a holistic answer. More recently, the coming-of-age of deep neural networks has dramatically improved the capabilities of large language models (LLMs). Trained on a large corpus of documents, these models not only memorize the vocabulary, morphology and syntax of human languages, but have shown to be able to memorize facts and relations [2]. Generative language models, when provided with a prompt, will extend the prompt with likely completions – an ability that can be used to extract answers to questions from the model. Two years ago, Metzler et al. argued that this ability of LLMs will allow us to rethink the search paradigm: to answer information needs directly rather that directing users to responsive primary sources [1]. Their vision was not without controversy; the following year Shaw and Bender argued that such a system is neither feasible nor desirable [3]. Nonetheless, the past year has seen the emergence of such systems, with offerings from established search engines and multiple new entrants to the industry. The keynote will summarize the short history of these generative information retrieval systems, and focus on the many open challenges in this emerging field: ensuring that answers are grounded, attributing answer passages to a primary source, providing nuanced answers to non-factoid-seeking questions, avoiding bias, and going beyond simple regurgitation of memorized facts. It will also touch on the changing nature of the content ecosystem. LLMs are starting to be used to generate web content. Should search engines treat such derived content equal to human-authored content? Is it possible to distinguish generated from original content? How should we view hybrid authorship where humans contribute ideas and LLMs shape these ideas into prose? And how will this parallel technical evolution of search engines and content ecosystems affect their respective business models?