Fusion of Detected Objects in Text for Visual Question Answering

Jeffrey Ling
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP) (2019), pp. 2131-2140

Abstract

To advance models of multimodal context‚ we introduce a simple yet powerful neural architecture for data that combines vision and natural language. The “Bounding Boxes in Text Transformer” (B2T2) also leverages referential information binding words to portions of the image in a single unified architecture. B2T2 is highly effective on the Visual Commonsense Reasoning benchmark (visualcommonsense.org)‚ achieving a new state-of-the-art with a 25% relative reduction in error rate compared to published baselines and obtaining the best performance to date on the public leaderboard. A detailed ablation analysis shows that the early integration of the visual features into the text analysis is key to the effectiveness of the new architecture. A reference implementation of our models is provided as supplementary material.