Fair Correlation clustering

Ravi Kumar
23rd International Conference on Artificial Intelligence and Statistics (AISTATS 2020)(2020) (to appear)


In this paper, we study correlation clustering under fairness constraints. Fair variants of k-median and k-center clustering have been studied recently, and approximation algorithms using a notion called fairlet decomposition have been proposed. We obtain approximation algorithms for fair correlation clustering under several important types of fairness constraints. Our results hinge on obtaining a fairlet decomposition for correlation clustering by introducing a novel combinatorial optimization problem. We define a fairlet decomposition with cost similar to the k-median cost and this allows us to obtain approximation algorithms for a wide range of fairness constraints. We complement our theoretical results with an in-depth analysis of our algorithms on real graphs where we show that fair solutions to correlation clustering can be obtained with limited increase in cost compared to the state-of-the-art (unfair) algorithms.