Jump to Content

Exploiting satellite observations for global surface albedo trends monitoring

Nektarios Chrysoulakis
Zina Mitraka
Theoretical and Applied Climatology, vol. 137 (2019), pp. 1-2


Surface albedo is one of the essential climate variables as it influences the radiation budget and the energy balance. Because it is used in a variety of scientific fields, from local to global scale, spatially and temporally disaggregated albedo data are required, which can be derived from satellites. Satellite observations have led to directional-hemispherical (black-sky) and bi-hemispherical (white-sky) albedo products, but time series of high spatial resolution true (blue-sky) albedo estimations at global level are not available. Here, we exploit the capabilities of Google Earth Engine (GEE) for big data analysis to derive global snow-free land surface albedo estimations and trends at a 500-m scale, using satellite observations from 2000 to 2015. Our study reveals negative albedo trends mainly in Mediterranean, India, south-western Africa and Eastern Australia, whereas positive trends mainly in Ukraine, South Russia and Eastern Kazakhstan, Eastern Asia, Brazil, Central and Eastern Africa and Central Australia. The bulk of these trends can be attributed to rainfall, changes in agricultural practices and snow cover duration. Our study also confirms that at local scale, albedo changes are consistent with land cover/use changes that are driven by anthropogenic activities.

Research Areas