Jump to Content

Estimation, Optimization, and Parallelism when Data is Sparse

John C. Duchi
Michael I. Jordan
Advances in Neural Information Processing Systems (NIPS) (2013)


We study stochastic optimization problems when the \emph{data} is sparse, which is in a sense dual to current perspectives on high-dimensional statistical learning and optimization. We highlight both the difficulties---in terms of increased sample complexity that sparse data necessitates---and the potential benefits, in terms of allowing parallelism and asynchrony in the design of algorithms. Concretely, we derive matching upper and lower bounds on the minimax rate for optimization and learning with sparse data, and we exhibit algorithms achieving these rates. We also show how leveraging sparsity leads to (still minimax optimal) parallel and asynchronous algorithms, providing experimental evidence complementing our theoretical results on several medium to large-scale learning tasks.

Research Areas