Jump to Content

Deep Music: Towards Musical Dialogue

Mason Bretan
Sageev Oore
Larry Heck
Google Scholar


Computer dialogue systems are designed with the intention of supporting meaningful interactions with humans. Common modes of communication include speech, text, and physical gestures. In this work we explore a communication paradigm in which the input and output channels consist of music. Specifically, we examine the musical interaction scenario of call and response. We present a system that utilizes a deep autoencoder to learn semantic embeddings of musical input. The system learns to transform these embeddings in a manner such that reconstructing from these transformation vectors produces appropriate musical responses. In order to generate a response the system employs a combination of generation and unit selection. Selection is based on a nearest neighbor search within the embedding space and for real-time applica- tion the search space is pruned using vector quantization. The live demo consists of a person playing a midi keyboard and the computer generating a response that is played through a loudspeaker.

Research Areas