Jump to Content

Calibrated Click-Through Auctions

Dirk Bergemann
Paul Duetting
Song Zuo
Proceedings of the ACM Web Conference 2022, pp. 47-57


We analyze the optimal information design in a click-through auction with stochastic click-through rates and known valuations per click. The auctioneer takes as given the auction rule of the click-through auction, namely the generalized second-price auction. Yet, the auctioneer can design the information flow regarding the click-through rates among the bidders. We require that the information structure to be calibrated in the learning sense. With this constraint, the auction needs to rank the ads by a product of the value and a calibrated prediction of the click-through rates. The task of designing an optimal information structure is thus reduced to the task of designing an optimal calibrated prediction. We show that in a symmetric setting with uncertainty about the click-through rates, the optimal information structure attains both social efficiency and surplus extraction. The optimal information structure requires private (rather than public) signals to the bidders. It also requires correlated (rather than independent) signals, even when the underlying uncertainty regarding the click-through rates is independent. Beyond symmetric settings, we show that the optimal information structure requires partial information disclosure, and achieves only partial surplus extraction.