Jump to Content

Sepand Mavandadi

Research Areas

Authored Publications
Google Publications
Other Publications
Sort By
  • Title
  • Title, descending
  • Year
  • Year, descending
    Preview abstract Text-only and semi-supervised training based on audio-only data has gained popularity recently due to the wide availability of unlabeled text or speech data. In this work, we propose text-only and semi-supervised training for attention-decoder based deliberation. By incorporating text-only data in training a bidirectional encoder representation from transformer (BERT) for the deliberation text encoder, joint acoustic and text decoder (JATD) training, and semi-supervised training based on a conventional model as a teacher, we achieved up to 11.7% WER reduction compared to the baseline deliberation. Compared to a state-of-the-art language model (LM) rescoring method, the deliberation model reduces the WER by 8% relative for Google Voice Search with reasonable endpointing latencies. We show that the deliberation has achieved a positive human side-by-side evaluation compared to LM rescoring. View details
    Preview abstract On-device end-to-end (E2E) models have shown improvementsover a conventional model on Search test sets in both quality, as measured by Word Error Rate (WER), and latency, measured by the time the result is finalized after the user stops speaking. However, the E2E model is trained on a small fraction of audio-text pairs compared to the 100 billion text utterances that a conventional language model (LM) is trained with. Thus E2E models perform poorly on rare words and phrases. In this paper, building upon the two-pass streaming Cascaded Encoder E2E model, we explore using a Hybrid Autoregressive Transducer (HAT) factorization to better integrate an on-device neural LM trained on text-only data. Furthermore, to further improve decoder latency we introduce a non-recurrent embedding decoder, in place of the typical LSTM decoder, into the Cascaded Encoder model. Overall, we present a streaming on-device model that incorporates an external neural LM and outperforms the conventional model in both search and rare-word quality, as well as latency, and is 318X smaller. View details
    Preview abstract We propose a new two-pass E2E speech recognition model that improves ASR performance by training on a combination of paired data and unpaired text data. Previously, the joint acoustic and text decoder (JATD) has shown promising results through the use of text data during model training and the recently introduced deliberation architecture has reduced recognition errors by leveraging first-pass decoding results. Our method, dubbed Deliberation-JATD, combines the spelling correcting abilities of deliberation with JATD’s use of unpaired text data to further improve performance. The proposed model produces substantial gains across multiple test sets, especially those focused on rare words, where it reduces word error rate (WER) by between 12% and 22.5% relative. This is done without increasing model size or requiring multi-stage training, making Deliberation-JATD an efficient candidate for on-device applications. View details
    No Results Found