Jump to Content
Matthieu Devin

Matthieu Devin

Matthieu Devin has been at Google since 2003, and joined the Brain team in 2011. He has a PhD. in Computer Science from Université Paris VII and graduated from École Polytechnique, France.
Authored Publications
Google Publications
Other Publications
Sort By
  • Title
  • Title, desc
  • Year
  • Year, desc
    TensorFlow: A system for large-scale machine learning
    Jianmin Chen
    Manjunath Kudlur
    Rajat Monga
    Benoit Steiner
    Paul Tucker
    Vijay Vasudevan
    Pete Warden
    Yuan Yu
    Xiaoqiang Zheng
    12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 16), USENIX Association (2016), pp. 265-283
    Preview abstract TensorFlow is a machine learning system that operates at large scale and in heterogeneous environments. TensorFlow uses dataflow graphs to represent computation, shared state, and the operations that mutate that state. It maps the nodes of a dataflow graph across many machines in a cluster, and within a machine across multiple computational devices, including multicore CPUs, general-purpose GPUs, and custom-designed ASICs known as Tensor Processing Units (TPUs). This architecture gives flexibility to the application developer: whereas in previous “parameter server” designs the management of shared state is built into the system, TensorFlow enables developers to experiment with novel optimizations and training algorithms. TensorFlow supports a variety of applications, with a focus on training and inference on deep neural networks. Several Google services use TensorFlow in production, we have released it as an open-source project, and it has become widely used for machine learning research. In this paper, we describe the TensorFlow dataflow model and demonstrate the compelling performance that Tensor- Flow achieves for several real-world applications. View details
    TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems
    Ashish Agarwal
    Ian Goodfellow
    Andrew Harp
    Yangqing Jia
    Rafal Jozefowicz
    Lukasz Kaiser
    Manjunath Kudlur
    Dan Mané
    Rajat Monga
    Chris Olah
    Mike Schuster
    Jonathon Shlens
    Benoit Steiner
    Ilya Sutskever
    Kunal Talwar
    Paul Tucker
    Vijay Vasudevan
    Pete Warden
    Yuan Yu
    Xiaoqiang Zheng
    tensorflow.org (2015)
    Preview abstract TensorFlow is an interface for expressing machine learning algorithms, and an implementation for executing such algorithms. A computation expressed using TensorFlow can be executed with little or no change on a wide variety of heterogeneous systems, ranging from mobile devices such as phones and tablets up to large-scale distributed systems of hundreds of machines and thousands of computational devices such as GPU cards. The system is flexible and can be used to express a wide variety of algorithms, including training and inference algorithms for deep neural network models, and it has been used for conducting research and for deploying machine learning systems into production across more than a dozen areas of computer science and other fields, including speech recognition, computer vision, robotics, information retrieval, natural language processing, geographic information extraction, and computational drug discovery. This paper describes the TensorFlow interface and an implementation of that interface that we have built at Google. The TensorFlow API and a reference implementation were released as an open-source package under the Apache 2.0 license in November, 2015 and are available at www.tensorflow.org. View details
    Multiframe Deep Neural Networks for Acoustic Modeling
    Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), IEEE, Vancouver, CA (2013)
    Preview abstract Deep neural networks have been shown to perform very well as acoustic models for automatic speech recognition. Compared to Gaussian mixtures however, they tend to be very expensive computationally, making them challenging to use in real-time applications. One key advantage of such neural networks is their ability to learn from very long observation windows going up to 400 ms. Given this very long temporal context, it is tempting to wonder whether one can run neural networks at a lower frame rate than the typical 10 ms, and whether there might be computational benefits to doing so. This paper describes a method of tying the neural network parameters over time which achieves comparable performance to the typical frame-synchronous model, while achieving up to a 4X reduction in the computational cost of the neural network activations. View details
    Multilingual acoustic models using distributed deep neural networks
    Patrick Nguyen
    Marc'aurelio Ranzato
    Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), IEEE, Vancouver, CA (2013)
    Preview abstract Today’s speech recognition technology is mature enough to be useful for many practical applications. In this context, it is of paramount importance to train accurate acoustic models for many languages within given resource constraints such as data, processing power, and time. Multilingual training has the potential to solve the data issue and close the performance gap between resource-rich and resourcescarce languages. Neural networks lend themselves naturally to parameter sharing across languages, and distributed implementations have made it feasible to train large networks. In this paper, we present experimental results for cross- and multi-lingual network training of eleven Romance languages on 10k hours of data in total. The average relative gains over the monolingual baselines are 4%/2% (data-scarce/data-rich languages) for cross- and 7%/2% for multi-lingual training. However, the additional gain from jointly training the languages on all data comes at an increased training time of roughly four weeks, compared to two weeks (monolingual) and one week (crosslingual). View details
    Building high-level features using large scale unsupervised learning
    Marc'Aurelio Ranzato
    Rajat Monga
    Andrew Ng
    International Conference in Machine Learning (2012)
    Preview abstract We consider the problem of building highlevel, class-specific feature detectors from only unlabeled data. For example, is it possible to learn a face detector using only unlabeled images? To answer this, we train a 9-layered locally connected sparse autoencoder with pooling and local contrast normalization on a large dataset of images (the model has 1 billion connections, the dataset has 10 million 200x200 pixel images downloaded from the Internet). We train this network using model parallelism and asynchronous SGD on a cluster with 1,000 machines (16,000 cores) for three days. Contrary to what appears to be a widely-held intuition, our experimental results reveal that it is possible to train a face detector without having to label images as containing a face or not. Control experiments show that this feature detector is robust not only to translation but also to scaling and out-of-plane rotation. We also find that the same network is sensitive to other high-level concepts such as cat faces and human bodies. Starting with these learned features, we trained our network to obtain 15.8% accuracy in recognizing 20,000 object categories from ImageNet, a leap of 70% relative improvement over the previous state-of-the-art. View details
    Large Scale Distributed Deep Networks
    Rajat Monga
    Mark Z. Mao
    Marc’Aurelio Ranzato
    Paul Tucker
    Ke Yang
    Andrew Y. Ng
    NIPS (2012)
    Preview abstract Recent work in unsupervised feature learning and deep learning has shown that being able to train large models can dramatically improve performance. In this paper, we consider the problem of training a deep network with billions of parameters using tens of thousands of CPU cores. We have developed a software framework called DistBelief that can utilize computing clusters with thousands of machines to train large models. Within this framework, we have developed two algorithms for large-scale distributed training: (i) Downpour SGD, an asynchronous stochastic gradient descent procedure supporting a large number of model replicas, and (ii) Sandblaster, a framework that supports a variety of distributed batch optimization procedures, including a distributed implementation of L-BFGS. Downpour SGD and Sandblaster L-BFGS both increase the scale and speed of deep network training. We have successfully used our system to train a deep network 30x larger than previously reported in the literature, and achieves state-of-the-art performance on ImageNet, a visual object recognition task with 16 million images and 21k categories. We show that these same techniques dramatically accelerate the training of a more modestly- sized deep network for a commercial speech recognition service. Although we focus on and report performance of these methods as applied to training large neural networks, the underlying algorithms are applicable to any gradient-based machine learning algorithm. View details
    No Results Found