Eric Zhu

Authored Publications
Sort By
  • Title
  • Title, descending
  • Year
  • Year, descending
    DAMP: Doubly Aligned Multilingual Parser for Task-Oriented Dialogue
    William Held
    Rahul Goel
    Diyi Yang
    Rushin Shah
    Association for Computational Linguistics(2023)
    Preview abstract Modern virtual assistants use internal semantic parsing engines to convert user utterances to actionable commands. However, prior work has demonstrated that semantic parsing is a difficult multilingual transfer task with low transfer efficiency compared to other tasks. In global markets such as India and Latin America, this is a critical issue as switching between languages is prevalent for bilingual users. In this work we dramatically improve the zero-shot performance of a multilingual and codeswitched semantic parsing system using two stages of multilingual alignment. First, we show that constrastive alignment pretraining improves both English performance and transfer efficiency. We then introduce a constrained optimization approach for hyperparameter-free adversarial alignment during finetuning. Our Doubly Aligned Multilingual Parser (DAMP) improves mBERT transfer performance by 3x, 6x, and 81x on the Spanglish, Hinglish and Multilingual Task Oriented Parsing benchmarks respectively and outperforms XLM-R and mT5-Large using 3.2x fewer parameters. View details
    EEAGER: A neural network model for finding beaver complexes in satellite and aerial imagery
    Emily Fairfax
    Steffi Maiman
    Aman Shaikh
    William W. Macfarlane
    Joseph M. Wheaton
    Dan Ackerstein
    Eddie Corwin
    JGR Biosciences, 128(2023), N/A
    Preview abstract Beavers are ecosystem engineers that create and maintain riparian wetland ecosystems in a variety of ecologic, climatic, and physical settings. Despite the large-scale implications of ongoing beaver conservation and range expansion, relatively few landscape-scale studies have been conducted, due in part to the significant time required to manually locate beaver dams at scale. To address this need, we developed EEAGER—an image recognition machine learning model that detects beaver complexes in aerial and satellite imagery. We developed the model in the western United States using 13,344 known beaver dam locations and 56,728 nearby locations without beaver dams. Performance assessment was performed in twelve held out evaluation polygons of known beaver occupancy but previously unmapped dam locations. These polygons represented regions similar to the training data as well as more novel landscape settings. Our model performed well overall (accuracy = 98.5%, recall = 63.03%, precision = 25.83%) in these areas, with stronger performance in regions similar to where the model had been trained. We favored recall over precision, which results in a more complete catalog of beaver dams found but also a higher incidence of false positives to be manually removed during quality control. These results have far-reaching implications for monitoring of beaver-based river restoration, as well as potential applications detecting other complex landforms. View details