Jump to Content
Yihe Dong

Yihe Dong

Yihe Dong is interested in geometric deep learning, robust and reliable ML, and natural language processing.
Authored Publications
Google Publications
Other Publications
Sort By
  • Title
  • Title, desc
  • Year
  • Year, desc
    Preview abstract In this paper, we propose a novel deep sequence model based on the Koopman theory for time series forecasting with distribution shifts. Our model, Koopman Neural Forecaster (KNF), leverages DNNs to learn the linear Koopman space and the measurement functions, and imposes inductive biases for improved robustness against distributional shifts. KNF employs both a global operator to learn shared characteristics, and a local operator to capture changing dynamics. KNF also includes a judiciously-designed feedback loop to continuously update the learnt operators over time for rapidly varying behaviors. To the best of our knowledge, this is the first time that Koopman theory is applied to real-world time series without known governing laws. We demonstrate that KNF achieves the state-of-the-art performance on wide range of time series datasets that are particularly known to suffer from distribution shifts. View details
    Preview abstract We propose a canonical approach for feature selection, sparse learnable masks (SLM). SLM integrates learnable sparse masks into end-to-end training. For the fundamental non-differentiability challenge of selecting a desired number of features, we propose duo mechanisms for automatic mask scaling to achieve the desired feature sparsity, and gradually tempering this sparsity for effective learning. In addition, SLM employs a novel objective that maximizes the mutual information (MI) between the selected features and the labels, in an efficient and scalable way. Empirically, SLM achieves state-of-the-art results on several benchmark datasets, often by a significant margin, especially on real-world challenging datasets. View details
    Preview abstract Multimodal large-scale pretraining has shown impressive performance gains for unstructured data including language, image, audio, and video. Yet, the scenario prominent in real-world applications is the existence of combination of structured (including tabular and time-series) and unstructured data in conjunction, and it has been understudied. Towards this end, we propose LANISTR, a novel attention-based framework to learn from LANguage, Image, and STRuctured data. We introduce a new multimodal fusion module with a similarity-based multimodal masking loss that enables LANISTR to learn cross-modal relations from large-scale multimodal data with missing modalities during training and test time. On two publicly available MIMIC-IV and Amazon Product Review datasets, LANISTR achieves absolute improvements of 6.47% (AUROC) and 8.35% (accuracy), respectively, compared to the state-of-the-art multimodal models, while showing superior generalization capabilities. View details
    Preview abstract Attention-based architectures have become ubiquitous in machine learning, yet our understanding of the reasons for their effectiveness remains limited. This work proposes a new way to understand self-attention networks: we show that their output can be decomposed into a sum of smaller terms, each involving the operation of a sequence of attention heads across layers. Using this decomposition, we prove that self-attention possesses a strong inductive bias towards "token uniformity". Specifically, without skip connections or multi-layer perceptrons (MLPs), the output converges doubly exponentially to a rank-1 matrix. On the other hand, skip connections and MLPs stop the output from degeneration. Our experiments verify the identified convergence phenomena on different variants of standard transformer architectures. View details
    No Results Found