Data Management
Google is deeply engaged in Data Management research across a variety of topics with deep connections to Google products. We are building intelligent systems to discover, annotate, and explore structured data from the Web, and to surface them creatively through Google products, such as Search (e.g., structured snippets, Docs, and many others). The overarching goal is to create a plethora of structured data on the Web that maximally help Google users consume, interact and explore information. Through those projects, we study various cutting-edge data management research issues including information extraction and integration, large scale data analysis, effective data exploration, etc., using a variety of techniques, such as information retrieval, data mining and machine learning.
A major research effort involves the management of structured data within the enterprise. The goal is to discover, index, monitor, and organize this type of data in order to make it easier to access high-quality datasets. This type of data carries different, and often richer, semantics than structured data on the Web, which in turn raises new opportunities and technical challenges in their management.
Furthermore, Data Management research across Google allows us to build technologies that power Google's largest businesses through scalable, reliable, fast, and general-purpose infrastructure for large-scale data processing as a service. Some examples of such technologies include F1, the database serving our ads infrastructure; Mesa, a petabyte-scale analytic data warehousing system; and Dremel, for petabyte-scale data processing with interactive response times. Dremel is available for external customers to use as part of Google Cloud’s BigQuery.