Jump to Content
Guanlong Zhao

Guanlong Zhao

Dr. Guanlong Zhao received a B.S. degree in Applied Physics from the University of Science and Technology of China, Hefei, China, in 2015, and a Ph.D. degree in Computer Science from Texas A&M University, College Station, TX, USA, in 2020. His research interests include speech synthesis, voice conversion, and accent conversion. More information can be found on https://guanlongzhao.github.io

Research Areas

Authored Publications
Google Publications
Other Publications
Sort By
  • Title
  • Title, descending
  • Year
  • Year, descending
    USM-SCD: USM-Based Multilingual Speaker Change Detection
    Yongqiang Wang
    Jason Pelecanos
    Yu Zhang
    Yiling Huang
    Han Lu
    ICASSP 2024 - 2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 11801-11805
    Preview abstract We introduce a multilingual speaker change detection model (USM- SCD) that can simultaneously detect speaker turns and perform ASR for 96 languages. This model is adapted from a speech foundation model trained on a large quantity of supervised and unsupervised data, demonstrating the utility of fine-tuning from a large generic foundation model for a downstream task. We analyze the performance of this multilingual speaker change detection model through a series of ablation studies. We show that the USM-SCD model can achieve more than 75% average speaker change detection F1 score across a test set that consists of data from 96 languages. On American English, the USM-SCD model can achieve an 85.8% speaker change detection F1 score across various public and internal test sets, beating the previous monolingual baseline model by 21% relative. We also show that we only need to fine-tune one-quarter of the trainable model parameters to achieve the best model performance. The USM-SCD model exhibits state-of-the-art ASR quality compared with a strong public ASR baseline, making it suitable to handle both tasks with negligible additional computational cost. View details
    Exploring sequence-to-sequence Transformer-Transducer models for keyword spotting
    Beltrán Labrador
    Angelo Scorza Scarpati
    Liam Fowl
    ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
    Preview abstract In this paper, we present a novel approach to adapt a sequence-to-sequence Transformer-Transducer ASR system to the keyword spotting (KWS) task. We achieve this by replacing the keyword in the text transcription with a special token kw and training the system to detect the kw token in an audio stream. At inference time, we create a decision function inspired by conventional KWS approaches, to make our approach more suitable for the KWS task. Furthermore, we introduce a specific keyword spotting loss by adapting the sequence-discriminative Minimum Bayes-Risk training technique. We find that our approach significantly outperforms ASR based KWS systems. When compared with a conventional keyword spotting system, our proposal has similar performance while bringing the advantages and flexibility of sequence-to-sequence training. Additionally, when combined with the conventional KWS system, our approach can improve the performance at any operation point. View details
    Augmenting Transformer-Transducer Based Speaker Change Detection With Token-Level Training Loss
    Han Lu
    Yiling Huang
    ICASSP 2023-2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
    Preview abstract In this work we propose a novel token-based training strategy that improves Transformer-Transducer (T-T) based speaker change detection (SCD) performance. The conventional T-T based SCD model loss optimizes all output tokens equally. Due to the sparsity of the speaker changes in the training data, the conventional T-T based SCD model loss leads to sub-optimal detection accuracy. To mitigate this issue, we use a customized edit-distance algorithm to estimate the SCD false accept (FA) and false reject (FR) rates during training and optimize model parameters to minimize a weighted combination of the FA and FR, focusing the model on accurately predicting speaker changes. Experiments on a group of challenging real-world datasets show that the proposed training method can significantly improve the overall performance of the SCD model with the same number of parameters. View details
    No Results Found