Transforming Sequence Tagging Into A Seq2Seq Task
Abstract
Pretrained, large, generative language models (LMs) have had great success in a wide range of sequence tagging and structured prediction tasks. Casting a sequence tagging task as a Seq2Seq problem requires deciding the formats of the input and output sequences. However, we lack a principled understanding of the trade-offs associated with these formats (such as the effect on model accuracy, sequence length, multilingual generalization, hallucination). In this paper, we rigorously study different *formats* one could use for casting input text sentences and their output labels into the "input" and "target" of a Seq2Seq model. Along the way, we introduce a new format, which we show to not only be simpler but also more effective. Additionally the new formats demonstrate significant gains in the multilingual settings -- both zero-shot transfer learning and joint training. Lastly, we find that the new formats are more robust and almost completely devoid of the danger of *hallucination* that often plagues existing formats. With well over a 1000 experiments studying 14 different formats, over 7 diverse public benchmarks -- including 3 multilingual datasets spanning 7 languages -- we believe our findings provide a strong empirical basis in understanding how we should tackle sequence tagging tasks.