Jump to Content

The Strongish Planted Clique Hypothesis and Its Applications

Aviad Rubinstein
Tselil Schramm
Innovations in Theoretical Computer Science (ITCS) (2021), 10:1-10:21
Google Scholar

Abstract

We formulate a new hardness assumption, the Strongish Planted Clique Hypothesis (SPCH), which postulates that any algorithm for planted clique must run in time n^Ω(log n) (so that the state-of-the-art runtime of n^O(log n) is optimal up to a constant in the exponent). We provide two sets of applications of the new hypothesis. First, we show that SPCH implies (nearly) tight inapproximability results for the following well-studied problems in terms of the parameter k: Densest k-Subgraph, Smallest k-Edge Subgraph, Densest k-Subhypergraph, Steiner k-Forest, Directed Steiner Network with k terminal pairs. For example, we show, under SPCH, that no polynomial time algorithm achieves o(k)-approximation for Densest k-Subgraph. This improves upon the previous best inapproximability ratio k^o(1) from (Chalermsook et al., FOCS 2017). Furthermore, our lower bounds hold even against fixed-parameter tractable (FPT) algorithms with parameter k. Our second application focuses on the complexity of graph pattern detection. For both induced and non-induced graph pattern detection, we prove hardness results under SPCH, which improve the running time lower bounds obtained by (Dalirrooyfard et al., STOC 2019) under ETH.