Suppressing quantum errors by scaling a surface code logical qubit

Anthony Megrant
Cody Jones
Jeremy Hilton
Jimmy Chen
Juan Atalaya
Kenny Lee
Michael Newman
Vadim Smelyanskiy
Yu Chen
Nature (2023)
Google Scholar

Abstract

Practical quantum computing will require error rates that are well below what is achievable with
physical qubits. Quantum error correction [1, 2] offers a path to algorithmically-relevant error rates
by encoding logical qubits within many physical qubits, where increasing the number of physical
qubits enhances protection against physical errors. However, introducing more qubits also increases
the number of error sources, so the density of errors must be sufficiently low in order for logical
performance to improve with increasing code size. Here, we report the measurement of logical qubit
performance scaling across multiple code sizes, and demonstrate that our system of superconducting
qubits has sufficient performance to overcome the additional errors from increasing qubit number.
We find our distance-5 surface code logical qubit modestly outperforms an ensemble of distance-3
logical qubits on average, both in terms of logical error probability over 25 cycles and logical error
per cycle (2.914%±0.016% compared to 3.028%±0.023%). To investigate damaging, low-probability
error sources, we run a distance-25 repetition code and observe a 1.7 × 10−6 logical error per round
floor set by a single high-energy event (1.6 × 10−7 when excluding this event). We are able to
accurately model our experiment, and from this model we can extract error budgets that highlight
the biggest challenges for future systems. These results mark the first experimental demonstration
where quantum error correction begins to improve performance with increasing qubit number, and
illuminate the path to reaching the logical error rates required for computation.

Research Areas