Super-resolution in Molecular Dynamics Trajectory Reconstruction with Bi-Directional Neural Networks

Paul Ludwig Winkler
Huziel Saucceda
Machine Learning: Science and Technology, 3 (2022), pp. 025011

Abstract

Molecular dynamics (MD) simulations are a cornerstone in science, enabling the investigation of a
system’s thermodynamics all the way to analyzing intricate molecular interactions. In general,
creating extended molecular trajectories can be a computationally expensive process, for example,
when running ab-initio simulations. Hence, repeating such calculations to either obtain more
accurate thermodynamics or to get a higher resolution in the dynamics generated by a fine-grained
quantum interaction can be time- and computational resource-consuming. In this work, we
explore different machine learning methodologies to increase the resolution of MD trajectories
on-demand within a post-processing step. As a proof of concept, we analyse the performance of
bi-directional neural networks (NNs) such as neural ODEs, Hamiltonian networks, recurrent NNs
and long short-term memories, as well as the uni-directional variants as a reference, for MD
simulations (here: the MD17 dataset). We have found that Bi-LSTMs are the best performing
models; by utilizing the local time-symmetry of thermostated trajectories they can even learn
long-range correlations and display high robustness to noisy dynamics across molecular
complexity. Our models can reach accuracies of up to 10−4 Å in trajectory interpolation, which
leads to the faithful reconstruction of several unseen high-frequency molecular vibration cycles.
This renders the comparison between the learned and reference trajectories indistinguishable. The
results reported in this work can serve (1) as a baseline for larger systems, as well as (2) for the
construction of better MD integrators.