Structured Understanding of Assessment and Plans in Clinical Documentation
Abstract
Physicians record their detailed thought-processes about diagnoses and treatments as unstructured text in a section of a clinical note called the assessment and plan. This information is more clinically rich than structured billing codes assigned for an encounter but harder to reliably extract given the complexity of clinical language and documentation habits. We describe and release a dataset containing annotations of 579 admission and progress notes from the publicly available and de-identified MIMIC-III ICU dataset with over 30,000 labels identifying active problems, their assessment, and the category of associated action items (e.g. medication, lab test). We also propose deep-learning based models that approach human performance, with a F1 score of 0.88. We found that by employing weak supervision and domain specific data-augmentation, we could improve generalization across departments and reduce the number of human labeled notes without sacrificing performance.