Streamlining Workload Management in AI-Driven Cloud Architectures: A Comparative Algorithmic Approach
Abstract
The use of artificial intelligence (AI) in cloud architectures has significantly increased processing efficiency and scale. However, with the development of complex algorithms and big data as well as surprisingly entered into our machine learning world; workload management becomes a significant issue in AI cloud computing. Existing workload management solutions are rule-based heuristics that may result in underutilization of resources and poor performance. For that, we present an algorithmic comparative approach to easing the burden of workload management for AI-driven cloud architectures. This is in contrast to executing a batch of tasks with different algorithms and comparing performance, cost, etc. We use ML methods to determine the best algorithm for our workload, and then deploy this in a self-contained binary that can switch between algorithms at runtime on an available resource. We validated our scheme with simulations, which demonstrates the capability of superior resource use and diminished completion time in comparison to rule-based schemes. When needed, flexibility and scalability allow you easier control over workloads that are subject to change or allocation. By simplifying AI-driven cloud workload management, the elasticity of their overall approach greatly enhances efficiency and scalability for those organizations looking to run even larger and take advantage of more complex workloads faster Tweet this Share on Facebook.