Robust Causal Inference for Incremental Return on Ad Spend with Randomized Paired Geo Experiments
Abstract
Evaluating the incremental return on ad spend (iROAS) of a prospective online marketing strategy (i.e., the ratio of the strategy’s causal effect on some response metric of interest relative to its causal effect on the ad spend) has become increasingly more important. Although randomized “geo experiments” are frequently employed for this evaluation, obtaining reliable estimates of iROAS can be challenging, as oftentimes only a small number of highly heterogeneous units are used. Moreover, advertisers frequently impose budget constraints on their ad spends which further complicates causal
inference by introducing interference between the experimental units. In this paper we formulate a novel statistical framework for inferring the iROAS of online advertising from randomized paired geo experiment, which further motivates and provides new insights into Rosenbaum’s arguments on instrumental variables, and we propose and develop a robust, distribution-free and interpretable estimator “Trimmed Match” as well as a data-driven choice of the tuning parameter which may be of independent interest. We investigate the sensitivity of Trimmed Match to some violations of its assumptions and show that it can be more efficient than some alternative estimators based on
simulated data. We then demonstrate its practical utility with real case studies.
inference by introducing interference between the experimental units. In this paper we formulate a novel statistical framework for inferring the iROAS of online advertising from randomized paired geo experiment, which further motivates and provides new insights into Rosenbaum’s arguments on instrumental variables, and we propose and develop a robust, distribution-free and interpretable estimator “Trimmed Match” as well as a data-driven choice of the tuning parameter which may be of independent interest. We investigate the sensitivity of Trimmed Match to some violations of its assumptions and show that it can be more efficient than some alternative estimators based on
simulated data. We then demonstrate its practical utility with real case studies.