Planar and Minor-Free Metrics Embed into Metrics of Polylogarithmic Treewidth with Expected Multiplicative Distortion Arbitrarily Close to 1
Abstract
We prove that there is a randomized polynomial-time algorithm that given an edge-weighted graph G
excluding a fixed-minor Q on n vertices and an accuracy parameter ε > 0, constructs an edge-weighted
graph H and an embedding η : V (G) → V (H) with the following properties:
• For any constant size Q, the treewidth of H is polynomial in ε^−1, log n, and the logarithm of the stretch of the distance metric in G.
• The expected multiplicative distortion is (1 + ε): for every pair of vertices u, v of G, we have
dist_H(η(u), η(v)) ⩾ dist_G(u, v) always and E[distH(η(u), η(v))] ⩽ (1 + ε)dist_G(u, v).
Our embedding is the first to achieve polylogarithmic treewidth of the host graph and comes close
to the lower bound by Carroll and Goel, who showed that any embedding of a planar graph with
O(1) expected distortion requires the host graph to have treewidth Ω(log n). It also provides a unified
framework for obtaining randomized quasi-polynomial-time approximation schemes for a variety of
problems including network design, clustering or routing problems, in minor-free metrics where the
optimization goal is the sum of selected distances. Applications include the capacitated vehicle routing
problem, and capacitated clustering problems.
excluding a fixed-minor Q on n vertices and an accuracy parameter ε > 0, constructs an edge-weighted
graph H and an embedding η : V (G) → V (H) with the following properties:
• For any constant size Q, the treewidth of H is polynomial in ε^−1, log n, and the logarithm of the stretch of the distance metric in G.
• The expected multiplicative distortion is (1 + ε): for every pair of vertices u, v of G, we have
dist_H(η(u), η(v)) ⩾ dist_G(u, v) always and E[distH(η(u), η(v))] ⩽ (1 + ε)dist_G(u, v).
Our embedding is the first to achieve polylogarithmic treewidth of the host graph and comes close
to the lower bound by Carroll and Goel, who showed that any embedding of a planar graph with
O(1) expected distortion requires the host graph to have treewidth Ω(log n). It also provides a unified
framework for obtaining randomized quasi-polynomial-time approximation schemes for a variety of
problems including network design, clustering or routing problems, in minor-free metrics where the
optimization goal is the sum of selected distances. Applications include the capacitated vehicle routing
problem, and capacitated clustering problems.