Parameter Estimation in Spherical Symmetry Groups

Dennis Wei
Gregory Newstadt
Marc DeGraef
Jeffrey Simmons
Alfred Hero
IEEE Signal Processing Letters, IEEE(2015), pp. 1152-1155

Abstract

This paper considers statistical estimation problems where the probability distribution of the observed random variable is invariant with respect to actions of a finite topological group. It is shown that any such distribution must satisfy a restricted finite mixture representation. When specialized to the case of distributions over the sphere that are invariant to the actions of a finite spherical symmetry group G, a groupinvariant extension of the Von Mises Fisher (VMF) distribution is obtained. The G-invariant VMF is parameterized by location and scale parameters that specify the distribution’s mean orientation and its concentration about the mean, respectively. Using the restricted finite mixture representation these parameters can be estimated using an Expectation Maximization (EM) maximum likelihood (ML) estimation algorithm. This is illustrated for the problem of mean crystal orientation estimation under the spherically symmetric group associated with the crystal form, e.g., cubic or octahedral or hexahedral. Simulations and experiments establish the advantages of the extended VMF EM-ML estimator for data acquired by Electron Backscatter Diffraction (EBSD) microscopy of a polycrystalline Nickel alloy sample.

Research Areas