MLP-Mixer: An All-MLP Architecture for Vision

Ilya Tolstikhin
Jessica Yung
Jakob Uszkoreit
Alexey Dosovitskiy
NeurIPS 2021 (poster)

Abstract

Convolutional Neural Networks (CNNs) are the go-to model for computer vision. Recently, attention-based networks, such as the Vision Transformer, have also become popular. In this paper we show that while convolutions and attention are both sufficient for good performance, neither of them are necessary. We present MLP-Mixer, an architecture based exclusively on multi-layer perceptrons (MLPs). MLP-Mixer contains two types of layers: one with MLPs applied independently to image patches (i.e. "mixing" the per-location features), and one with MLPs applied across patches (i.e. "mixing" spatial information). When trained on large datasets, or with modern regularization schemes, MLP-Mixer attains competitive scores on image classification benchmarks with comparable pre-training and inference cost. We hope that these results spark further research beyond the realms of well established CNNs and Transformers.