Learning Deep Latent Gaussian Models with Markov Chain Monte Carlo

International Conference on Machine Learning(2017)
Google Scholar

Abstract

Deep latent Gaussian models are powerful and popular probabilistic models of high-dimensional data. These models are almost always fit using variational expectation-maximization, an approximation to true maximum-marginal-likelihood estimation. In this paper, we propose a different approach: rather than use a variational approximation (which produces biased gradient signals), we use Markov chain Monte Carlo (MCMC, which allows us to trade bias for computation). We find that our MCMC-based approach has several advantages: it yields higher held-out likelihoods, produces sharper images, and does not suffer from the variational overpruning effect. MCMC’s additional computational overhead proves to be significant, but not prohibitive.