Isometric Representation Learning for Disentangled Latent Space of Diffusion Models

Jaehoon Hahm
Junho Lee
Sunghyun Kim
(2024)
Google Scholar

Abstract

The latent space of diffusion model mostly still remains unexplored, despite its great success and potential in the field of generative modeling. In fact, the latent space of existing diffusion models are entangled, with a distorted mapping from its latent space to image space. To tackle this problem, we present Isometric Diffusion, equipping a diffusion model with a geometric regularizer to guide the model to learn a geometrically sound latent space. Our approach allows diffusion models to learn a more disentangled latent space, which enables smoother interpolation, more accurate inversion, and more precise control over attributes directly in the latent space. Extensive experiments illustrate advantages of the proposed method in image interpolation, image inversion, and linear editing.