Investigating Rumor News Using Agreement-Aware Search
Abstract
Recent years have witnessed a widespread increase of rumor news generated by humans and machines in order to attract readership, influence opinions, and increase click-through revenue. Therefore, tools for investigating rumor news have become an urgent necessity. One useful function of such tools is to see ways a specific topic or event is represented by presenting different points of view from multiple sources. In this paper, we propose Maester, a novel agreement-aware search framework for investigating rumor news. Given an investigative question, Maester will retrieve related articles to that question, assign and display top articles from agree, disagree, and discuss categories to users. Splitting the results into these three categories provides the user a holistic view towards the investigative question. We build Maester based on the following two key observations: (1) relatedness can commonly be determined by keywords and entities occurring in both questions and articles, and (2) the level of agreement between the investigative question and the related news article can often be decided by a few key sentences. Accordingly, we use gradient boosting tree models with keyword/entity matching features for relatedness detection, and leverage recurrent neural network to infer the level of agreement. Our experiments on the Fake News Challenge (FNC) “stance detection” dataset demonstrate up to an order of magnitude improvement of Maester over the original FNC winning solution, for agreement-aware search.