Graph-RISE: Graph-Regularized Image Semantic Embedding
Abstract
Learning image representation to capture instance-based semantics has been a challenging and important task for enabling many applications such as image search and clustering. In this paper, we explore the limits of image embedding learning at unprecedented scale and granularity. We present Graph-RISE, an image embedding that captures very fine-grained, instance-level semantics. Graph-RISE is learned via a large-scale, neural graph learning framework that leverages graph structure to regularize the training of deep neural networks. To the best of our knowledge, this is the first work that can capture instance-level image semantics at million—O(40M)—scale. Experimental results show that Graph-RISE outperforms state-of-the-art image embedding algorithms on several evaluation tasks, including image classification and triplet ranking. We also provide case studies to demonstrate that, qualitatively, image retrieval based on Graph-RISE well captures the semantics and differentiates nuances at instance level.