Generating Logical Forms from Graph Representations of Text and Entities
Abstract
Semantic parsing maps natural language utterances into structured meaning representations. We present an approach that uses a Graph Neural Network (GNN) architecture to incorporate information about relevant entities and their relations during parsing. Combined with a decoder copy mechanism, this approach also provides a conceptually simple mechanism to generate logical forms with entities. We demonstrate that this approach is competitive with state-of-the-art across several tasks without pre-training, and outperforms existing approaches when combined with BERT pre-training.