Error Mitigation via Verified Phase Estimation

Thomas E O'Brien
Stefano Polla
Bill Huggins
Sam Connor McArdle
PRX Quantum, 2(2021)

Abstract

We present a novel error mitigation technique for quantum phase estimation. By post-selecting the system register to be in the starting state, we convert all single errors prior to final measurement to a time-dependent decay (up to on average exponentially small corrections), which may be accurately corrected for at the cost of additional measurement. This error migitation can be built into phase estimation techniques that do not require control qubits. By separating the observable of interest into a linear combination of fast-forwardable Hamiltonians and measuring those components individually, we can convert this decay into a constant offset. Using this technique, we demonstrate the estimation of expectation values on numerical simulations of moderately-sized quantum circuits with multiple orders of magnitude improvement over unmitigated estimation at near-term error rates. We further combine verified phase estimation with the optimization step in a variational algorithm to provide additional mitigation of control error. In many cases, our results demonstrate a clear signature that the verification technique can mitigate against any single error occurring in an instance of a quantum computation: the error $\epsilon$ in the expectation value estimation scales with $p^2$, where $p$ is the probability of an error occurring at any point in the circuit. Further numerics indicate that our scheme remains robust in the presence of sampling noise, though different classical post-processing methods may lead to up to an order of magnitude error increase in the final energy estimates.

Research Areas