Enhancing diagnostic accuracy of medical AI systems via selective deferral to clinicians

Dj Dvijotham
Jim Winkens
Melih Barsbey
Sumedh Ghaisas
Robert Stanforth
Nick Pawlowski
Patricia Strachan
Zahra Ahmed
Yoram Bachrach
Laura Culp
Jan Freyberg
Atilla Kiraly
Timo Kohlberger
Scott Mayer McKinney
Basil Mustafa
Krzysztof Geras
Jan Witowski
Zhi Zhen Qin
Jacob Creswell
Shravya Shetty
Terry Spitz
Taylan Cemgil
Nature Medicine (2023)

Abstract

AI systems trained using deep learning have been shown to achieve expert-level identification of diseases in multiple medical imaging settings1,2. While these results are impressive, they don’t accurately reflect the impact of deployment of such systems in a clinical context. Due to the safety-critical nature of this domain and the fact that AI systems are not perfect and can make inaccurate assessments, they are predominantly deployed as assistive tools for clinical experts3. Although clinicians routinely discuss the diagnostic nuances of medical images with each other, weighing human diagnostic confidence against that of an AI system remains a major unsolved barrier to collaborative decision-making4. Furthermore, it has been observed that diagnostic AI models have complementary strengths and weaknesses compared to clinical experts. Yet, complementarity and the assessment of relative confidence between the members of a diagnostic team has remained largely unexploited in how AI systems are currently used in medical settings5.

In this paper, we study the behavior of a team composed of diagnostic AI model(s) and clinician(s) in diagnosing disease. To go beyond the performance level of a standalone AI system, we develop a novel selective deferral algorithm that can learn to decide when to rely on a diagnostic AI model and when to defer to a clinical expert. Using this algorithm, we demonstrate that the composite AI+human system has enhanced accuracy (both sensitivity and specificity) relative to a human-only or an AI-only baseline. We decouple the development of the deferral AI model from training of the underlying diagnostic AI model(s). Development of the deferral AI model only requires i) the predictions of a model(s) on a tuning set of medical images (separate from the diagnostic AI models’ training data), ii) the diagnoses made by clinicians on these images and iii) the ground truth disease labels corresponding to those images.

Our extensive analysis shows that the selective deferral (SD) system exceeds the performance of either clinicians or AI alone in multiple clinical settings: breast and lung cancer screening. For breast cancer screening, double-reading with arbitration (two readers interpreting each mammogram invoking an arbitrator if needed) is a “gold standard” for performance, never previously exceeded using AI6. The SD system exceeds the accuracy of double-reading with arbitration in a large representative UK screening program (25% reduction in false positives despite equivalent true-positive detection and 66% reduction in the requirement for clinicians to read an image), as well as exceeding the performance of a standalone state-of-art AI system (40% reduction in false positives with equivalent detection of true positives). In a large US dataset the SD system exceeds the accuracy of single-reading by board-certified radiologists and a standalone state-of-art AI system (32% reduction in false positives despite equivalent detection of true positives and 55% reduction in the clinician workload required). The SD system further outperforms both clinical experts alone, and AI alone for the detection of lung cancer in low-dose Computed Tomography images from a large national screening study, with 11% reduction in false positives while maintaining sensitivity given 93% reduction in clinician workload required. Furthermore, the SD system allows controllable trade-offs between sensitivity and specificity and can be tuned to target either specificity or sensitivity as desired for a particular clinical application, or a combination of both.

The system generalizes to multiple distribution shifts, retaining superiority to both the AI system alone and human experts alone. We demonstrate that the SD system retains performance gains even on clinicians not present in the training data for the deferral AI. Furthermore, we test the SD system on a new population where the standalone AI system’s performance significantly degrades. We showcase the few-shot adaptation capability of the SD system by demonstrating that the SD system can obtain superiority to both the standalone AI system and the clinician on the new population after being trained on only 40 cases from the new population.

Our comprehensive assessment demonstrates that a selective deferral system could significantly improve clinical outcomes in multiple medical imaging applications, paving the way for higher performance clinical AI systems that can leverage the complementarity between clinical experts and medical AI tools.