Differentially Private Learning of Geometric Concepts
Abstract
We present differentially private efficient algorithms for learning polygons in the plane (which are not necessarily convex). Our algorithm achieves $(\alpha,\beta)$-PAC learning and $(\eps,\delta)$-differential privacy using a sample of size $O\left(\frac{k}{\alpha\eps}\log\left(\frac{|X|}{\beta\delta}\right)\right)$, where the domain is $X\times X$ and $k$ is the number of edges in the (potentially non-convex) polygon.