Community search signatures as foundation features for human-centered geospatial modeling

Chaitanya Kamath
Mohit Agarwal
Arbaaz Muslim
David Schottlander
Shailesh Bavadekar
Niv Efron
Shravya Shetty
ICML 2024 Workshop on Data-Centric Machine Learning Research

Abstract

Aggregated relative search frequencies offer a unique composite signal reflecting people's habits, concerns, interests, intents, and general information needs, which are not found in other readily available datasets. Temporal search trends have been successfully used to perform nowcasting across a variety of domains such as infectious diseases, unemployment rates, and retail sales. However, most existing applications require curating specialized datasets of individual keywords, queries, or query clusters, and the search data need to be temporally aligned with the outcome variable of interest. We propose a novel approach for generating an aggregated and anonymized representation of search interest as foundation features at the community level for geospatial modeling. We benchmark these features using spatial datasets across multiple domains. In regions with a population greater than 3000 that cover over 95% of the contiguous US population, our models achieve an average R-squared score of 0.74 across 21 health variables, and 0.80 across 6 demographic and environmental variables. Our results demonstrate that these search features can be used for spatial predictions without strict temporal alignment, and that the resulting models outperform spatial interpolation and state of the art methods using satellite imagery features.