Bias Correction For Paid Search In Media Mix Modeling
Abstract
Evaluating the return on ad spend (ROAS), the causal effect of advertising
on sales, is critical to advertisers for understanding the performance of their
existing marketing strategy as well as how to improve and optimize it. Media
Mix Modeling (MMM) has been used as a convenient analytical tool to address
the problem using observational data. However it is well recognized that MMM
suffers from various fundamental challenges: data collection, model specification
and selection bias due to ad targeting, among others (Chan & Perry 2017; Wolfe
2016).
In this paper, we study the challenge associated with measuring the impact
of search ads in MMM, namely the selection bias due to ad targeting. Using
causal diagrams of the search ad environment, we derive a statistically principled
method for bias correction based on the back-door criterion (Pearl 2013).
We use case studies to show that the method provides promising results by
comparison with results from randomized experiments. We also report a more
complex case study where the advertiser had spent on more than a dozen media
channels but results from a randomized experiment are not available. Both our
theory and empirical studies suggest that in some common, practical scenarios,
one may be able to obtain an approximately unbiased estimate of search ad
ROAS.
on sales, is critical to advertisers for understanding the performance of their
existing marketing strategy as well as how to improve and optimize it. Media
Mix Modeling (MMM) has been used as a convenient analytical tool to address
the problem using observational data. However it is well recognized that MMM
suffers from various fundamental challenges: data collection, model specification
and selection bias due to ad targeting, among others (Chan & Perry 2017; Wolfe
2016).
In this paper, we study the challenge associated with measuring the impact
of search ads in MMM, namely the selection bias due to ad targeting. Using
causal diagrams of the search ad environment, we derive a statistically principled
method for bias correction based on the back-door criterion (Pearl 2013).
We use case studies to show that the method provides promising results by
comparison with results from randomized experiments. We also report a more
complex case study where the advertiser had spent on more than a dozen media
channels but results from a randomized experiment are not available. Both our
theory and empirical studies suggest that in some common, practical scenarios,
one may be able to obtain an approximately unbiased estimate of search ad
ROAS.